Zeng Z et al. ( 2006)
Cancer research 66 7 3737--3746
Simultaneous inhibition of PDK1/AKT and Fms-like tyrosine kinase 3 signaling by a small-molecule KP372-1 induces mitochondrial dysfunction and apoptosis in acute myelogenous leukemia.
Phosphoinositol-3-kinase (PI3K)/protein kinase B (AKT) and Fms-like tyrosine kinase 3 (FLT3) signaling are aberrantly activated in acute myelogenous leukemia (AML) cells. Constitutively activated AKT and FLT3 regulate leukemia cell survival and resistance to chemotherapy. In this study,we investigated the effects of the novel multiple kinase inhibitor KP372-1 on the survival of AML cell lines and primary AML samples. KP372-1 directly inhibited the kinase activity of AKT,PDK1,and FLT3 in a concentration-dependent manner. Western blot analysis indicated that KP372-1 decreased the phosphorylation of AKT on both Ser(473) and Thr(308); abrogated the phosphorylation of p70S6 kinase,BAD,and Foxo3a via PI3K/AKT signaling; and down-regulated expression of PIM-1 through direct inhibition of FLT3. Treatment of AML cell lines with KP372-1 resulted in rapid generation of reactive oxygen species and stimulation of oxygen consumption,followed by mitochondrial depolarization,caspase activation,and phosphatidylserine externalization. KP372-1 induced pronounced apoptosis in AML cell lines and primary samples irrespective of their FLT3 status,but not in normal CD34(+) cells. Moreover,KP372-1 markedly decreased the colony-forming ability of primary AML samples (IC(50) textless 200 nmol/L) with minimal cytotoxic effects on normal progenitor cells. Taken together,our results show that the simultaneous inhibition of critical prosurvival kinases by KP372-1 leads to mitochondrial dysfunction and apoptosis of AML but not normal hematopoietic progenitor cells.
View Publication
Qué et al. (JUN 2011)
Blood 117 22 5918--30
Smad4 binds Hoxa9 in the cytoplasm and protects primitive hematopoietic cells against nuclear activation by Hoxa9 and leukemia transformation.
We studied leukemic stem cells (LSCs) in a Smad4(-/-) mouse model of acute myelogenous leukemia (AML) induced either by the HOXA9 gene or by the fusion oncogene NUP98-HOXA9. Although Hoxa9-Smad4 complexes accumulate in the cytoplasm of normal hematopoietic stem cells and progenitor cells (HSPCs) transduced with these oncogenes,there is no cytoplasmic stabilization of HOXA9 in Smad4(-/-) HSPCs,and as a consequence increased levels of Hoxa9 is observed in the nucleus leading to increased immortalization in vitro. Loss of Smad4 accelerates the development of leukemia in vivo because of an increase in transformation of HSPCs. Therefore,the cytoplasmic binding of Hoxa9 by Smad4 is a mechanism to protect Hoxa9-induced transformation of normal HSPCs. Because Smad4 is a potent tumor suppressor involved in growth control,we developed a strategy to modify the subcellular distribution of Smad4. We successfully disrupted the interaction between Hoxa9 and Smad4 to activate the TGF-β pathway and apoptosis,leading to a loss of LSCs. Together,these findings reveal a major role for Smad4 in the negative regulation of leukemia initiation and maintenance induced by HOXA9/NUP98-HOXA9 and provide strong evidence that antagonizing Smad4 stabilization by these oncoproteins might be a promising novel therapeutic approach in leukemia.
View Publication
Hu K et al. ( 2012)
Breast cancer research : BCR 14 1 R22
Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells.
INTRODUCTION Triple-negative breast cancer (TNBC) high rate of relapse is thought to be due to the presence of tumor-initiating cells (TICs),molecularly defined as being CD44high/CD24-/low. TICs are resilient to chemotherapy and radiation. However,no currently accepted molecular target exists against TNBC and,moreover,TICs. Therefore,we sought the identification of kinase targets that inhibit TNBC growth and eliminate TICs. METHODS A genome-wide human kinase small interfering RNA (siRNA) library (691 kinases) was screened against the TNBC cell line SUM149 for growth inhibition. Selected siRNAs were then tested on four different breast cancer cell lines to confirm the spectrum of activity. Their effect on the CD44high subpopulation and sorted CD44high/CD24-/low cells of SUM149 also was studied. Further studies were focused on polo-like kinase 1 (PLK1),including its expression in breast cancer cell lines,effect on the CD44high/CD24-/low TIC subpopulation,growth inhibition,mammosphere formation,and apoptosis,as well as the activity of the PLK1 inhibitor,BI 2536. RESULTS Of the 85 kinases identified in the screen,28 of them were further silenced by siRNAs on MDA-MB-231 (TNBC),BT474-M1 (ER+/HER2+,a metastatic variant),and HR5 (ER+/HER2+,a trastuzumab-resistant model) cells and showed a broad spectrum of growth inhibition. Importantly,12 of 28 kinases also reduced the CD44high subpopulation compared with control in SUM149. Further tests of these 12 kinases directly on a sorted CD44high/CD24-/low TIC subpopulation of SUM149 cells confirmed their effect. Blocking PLK1 had the greatest growth inhibition on breast cancer cells and TICs by about 80% to 90% after 72 hours. PLK1 was universally expressed in breast cancer cell lines,representing all of the breast cancer subtypes,and was positively correlated to CD44. The PLK1 inhibitor BI 2536 showed similar effects on growth,mammosphere formation,and apoptosis as did PLK1 siRNAs. Finally,whereas paclitaxel,doxorubicin,and 5-fluorouracil enriched the CD44high/CD24-/low population compared with control in SUM149,subsequent treatment with BI 2536 killed the emergent population,suggesting that it could potentially be used to prevent relapse. CONCLUSION Inhibiting PLK1 with siRNA or BI 2536 blocked growth of TNBCs including the CD44high/CD24-/low TIC subpopulation and mammosphere formation. Thus,PLK1 could be a potential therapeutic target for the treatment of TNBC as well as other subtypes of breast cancer.
View Publication
SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance.
Tumor cells at the tumor margin lose epithelial properties and acquire features of mesenchymal cells,a process called epithelial-to-mesenchymal transition (EMT). Recently,features of EMT were shown to be linked to cells with tumor-founding capability,so-called cancer stem cells (CSCs). Inducers of the EMT include several transcription factors,such as Snail (SNAI1) and Slug (SNAI2),as well as the secreted transforming growth factor (TGFß). In the present study,we found that EMT induction in MCF10A cells by stably expressing SNAI1 contributed to drug resistance and acquisition of stem/progenitor-like character as shown by increased cell population for surface marker CD44(+)/CD24(-) and mammosphere forming capacity. Using a microarray approach,we demonstrate that SNAI1 overexpression results in a dramatic change in signaling pathways involved in the regulation of cell death and stem cell maintenance. We showed that NF-$$B/MAPK signaling pathways are highly activated in MCF10A-SNAI1 cells by IL1ß stimulation,leading to the robust induction in IL6 and IL8. Furthermore,MCF10A-SNAI1 cells showed enhanced TCF/ß-catenin activity responding to the exogenous Wnt3a treatment. However,EMT-induced stem/progenitor cell activation process is tightly regulated in non-transformed MCF10A cells,as WNT5A and TGFB2 are strongly upregulated in MCF10A-SNAI1 cells antagonizing canonical Wnt pathway. In summary,our data provide new molecular findings how EMT contributes to the enhanced chemoresistance and the acquisition of stem/progenitor-like character by regulating signaling pathways.
View Publication
挂图
SnapShot: Breast Cancer
Overview of signaling pathways, commonly mutated genes and breast cancer subtypes
Somatic activation of a conditional KrasG12D allele causes ineffective erythropoiesis in vivo.
Somatic activation of a conditional targeted Kras(G12D) allele induces a fatal myeloproliferative disease in mice that closely models juvenile and chronic myelomonocytic leukemia. These mice consistently develop severe and progressive anemia despite adequate numbers of clonogenic erythroid progenitors in the bone marrow and expanded splenic hematopoiesis. Ineffective erythropoiesis is characterized by impaired differentiation. These results demonstrate that endogenous levels of oncogenic Ras have cell lineage-specific effects and support efforts to modulate Ras signaling for therapy of anemia in patients with myelodysplastic syndromes and myeloproliferative disorders.
View Publication
Cantù et al. (MAR 2011)
Blood 117 13 3669--79
Sox6 enhances erythroid differentiation in human erythroid progenitors.
Sox6 belongs to the Sry (sex-determining region Y)-related high-mobility-group-box family of transcription factors,which control cell-fate specification of many cell types. Here,we explored the role of Sox6 in human erythropoiesis by its overexpression both in the erythroleukemic K562 cell line and in primary erythroid cultures from human cord blood CD34+ cells. Sox6 induced significant erythroid differentiation in both models. K562 cells underwent hemoglobinization and,despite their leukemic origin,died within 9 days after transduction; primary erythroid cultures accelerated their kinetics of erythroid maturation and increased the number of cells that reached the final enucleation step. Searching for direct Sox6 targets,we found SOCS3 (suppressor of cytokine signaling-3),a known mediator of cytokine response. Sox6 was bound in vitro and in vivo to an evolutionarily conserved regulatory SOCS3 element,which induced transcriptional activation. SOCS3 overexpression in K562 cells and in primary erythroid cells recapitulated the growth inhibition induced by Sox6,which demonstrates that SOCS3 is a relevant Sox6 effector.
View Publication
Zhang Y et al. (MAR 2015)
Molecular cancer 14 1 56
Sp1 and c-Myc modulate drug resistance of leukemia stem cells by regulating survivin expression through the ERK-MSK MAPK signaling pathway.
BACKGROUND Acute myeloid leukemia (AML) is initiated and maintained by a subset of self-renewing leukemia stem cells (LSCs),which contribute to the progression,recurrence and therapeutic resistance of leukemia. However,the mechanisms underlying the maintenance of LSCs drug resistance have not been fully defined. In this study,we attempted to elucidate the mechanisms of LSCs drug resistance. METHODS We performed reverse phase protein arrays to analyze the expression of anti-apoptotic proteins in the LSC-enriched leukemia cell line KG-1a. Immuno-blotting,cell viability and clinical AML samples were evaluated to verify the micro-assay results. The characteristics and transcriptional regulation of survivin were analyzed with the relative luciferase reporter assay,mutant constructs,chromatin immuno-precipitation (ChIP),quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR),and western blotting. The levels of Sp1,c-Myc,phospho-extracellular signal-regulated kinase (p-ERK),phospho-mitogen and stress-activated protein kinase (p-MSK) were investigated in paired CD34+ and CD34- AML patient samples. RESULTS Survivin was highly over-expressed in CD34 + CD38- KG-1a cells and paired CD34+ AML patients compared with their differentiated counterparts. Functionally,survivin contributes to the drug resistance of LSCs,and Sp1 and c-Myc concurrently regulate levels of survivin transcription. Clinically,Sp1 and c-Myc were significantly up-regulated and positively correlated with survivin in CD34+ AML patients. Moreover,Sp1 and c-Myc were further activated by the ERK/MSK mitogen-activated protein kinase (MAPK) signaling pathway,modulating survivin levels. CONCLUSION Our findings demonstrated that ERK/MSK/Sp1/c-Myc axis functioned as a critical regulator of survivin expression in LSCs,offering a potential new therapeutic strategy for LSCs therapy.
View Publication