McCracken KW et al. (DEC 2014)
Nature 516 7531 400--4
Modelling human development and disease in pluripotent stem-cell-derived gastric organoids.
Gastric diseases,including peptic ulcer disease and gastric cancer,affect 10% of the world's population and are largely due to chronic Helicobacter pylori infection. Species differences in embryonic development and architecture of the adult stomach make animal models suboptimal for studying human stomach organogenesis and pathogenesis,and there is no experimental model of normal human gastric mucosa. Here we report the de novo generation of three-dimensional human gastric tissue in vitro through the directed differentiation of human pluripotent stem cells. We show that temporal manipulation of the FGF,WNT,BMP,retinoic acid and EGF signalling pathways and three-dimensional growth are sufficient to generate human gastric organoids (hGOs). Developing hGOs progressed through molecular and morphogenetic stages that were nearly identical to the developing antrum of the mouse stomach. Organoids formed primitive gastric gland- and pit-like domains,proliferative zones containing LGR5-expressing cells,surface and antral mucous cells,and a diversity of gastric endocrine cells. We used hGO cultures to identify novel signalling mechanisms that regulate early endoderm patterning and gastric endocrine cell differentiation upstream of the transcription factor NEUROG3. Using hGOs to model pathogenesis of human disease,we found that H. pylori infection resulted in rapid association of the virulence factor CagA with the c-Met receptor,activation of signalling and induction of epithelial proliferation. Together,these studies describe a new and robust in vitro system for elucidating the mechanisms underlying human stomach development and disease.
View Publication
Law JH et al. (JAN 2010)
PloS one 5 9
Molecular decoy to the Y-box binding protein-1 suppresses the growth of breast and prostate cancer cells whilst sparing normal cell viability.
The Y-box binding protein-1 (YB-1) is an oncogenic transcription/translation factor that is activated by phosphorylation at S102 whereby it induces the expression of growth promoting genes such as EGFR and HER-2. We recently illustrated by an in vitro kinase assay that a novel peptide to YB-1 was highly phosphorylated by the serine/threonine p90 S6 kinases RSK-1 and RSK-2,and to a lesser degree PKCα and AKT. Herein,we sought to develop this decoy cell permeable peptide (CPP) as a cancer therapeutic. This 9-mer was designed as an interference peptide that would prevent endogenous YB-1(S102) phosphorylation based on molecular docking. In cancer cells,the CPP blocked P-YB-1(S102) and down-regulated both HER-2 and EGFR transcript level and protein expression. Further,the CPP prevented YB-1 from binding to the EGFR promoter in a gel shift assay. Notably,the growth of breast (SUM149,MDA-MB-453,AU565) and prostate (PC3,LNCap) cancer cells was inhibited by ∼90% with the CPP. Further,treatment with this peptide enhanced sensitivity and overcame resistance to trastuzumab in cells expressing amplified HER-2. By contrast,the CPP had no inhibitory effect on the growth of normal immortalized breast epithelial (184htert) cells,primary breast epithelial cells,nor did it inhibit differentiation of hematopoietic progenitors. These data collectively suggest that the CPP is a novel approach to suppressing the growth of cancer cells while sparing normal cells and thereby establishes a proof-of-concept that blocking YB-1 activation is a new course of cancer therapeutics.
View Publication
Hideshima T et al. (FEB 2003)
Blood 101 4 1530--4
Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341.
We have recently shown that proteasome inhibitor PS-341 induces apoptosis in drug-resistant multiple myeloma (MM) cells,inhibits binding of MM cells in the bone marrow microenvironment,and inhibits cytokines mediating MM cell growth,survival,drug resistance,and migration in vitro. PS-341 also inhibits human MM cell growth and prolongs survival in a SCID mouse model. Importantly,PS-341 has achieved remarkable clinical responses in patients with refractory relapsed MM. We here demonstrate molecular mechanisms whereby PS-341 mediates anti-MM activity by inducing p53 and MDM2 protein expression; inducing the phosphorylation (Ser15) of p53 protein; activating c-Jun NH(2)-terminal kinase (JNK),caspase-8,and caspase-3; and cleaving the DNA protein kinase catalytic subunit,ATM,and MDM2. Inhibition of JNK activity abrogates PS-341-induced MM cell death. These studies identify molecular targets of PS-341 and provide the rationale for the development of second-generation,more targeted therapies.
View Publication
Ketola K et al. (DEC 2010)
Molecular cancer therapeutics 9 12 3175--85
Monensin is a potent inducer of oxidative stress and inhibitor of androgen signaling leading to apoptosis in prostate cancer cells.
Current treatment options for advanced and hormone refractory prostate cancer are limited and responses to commonly used androgen pathway inhibitors are often unsatisfactory. Our recent results indicated that sodium ionophore monensin is one of the most potent and cancer-specific inhibitors in a systematic sensitivity testing of most known drugs and drug-like molecules in a panel of prostate cancer cell models. Because monensin has been extensively used in veterinary applications to build muscle mass in cattle,the link to prostate cancer and androgen signaling was particularly interesting. Here,we showed that monensin effects at nanomolar concentrations are linked to induction of apoptosis and potent reduction of androgen receptor mRNA and protein in prostate cancer cells. Monensin also elevated intracellular oxidative stress in prostate cancer cells as evidenced by increased generation of intracellular reactive oxygen species and by induction of a transcriptional profile characteristic of an oxidative stress response. Importantly,the antiproliferative effects of monensin were potentiated by combinatorial treatment with the antiandrogens and antagonized by antioxidant vitamin C. Taken together,our results suggest monensin as a potential well-tolerated,in vivo compatible drug with strong proapoptotic effects in prostate cancer cells,and synergistic effects with antiandrogens. Moreover,our data suggest a general strategy by which the effects of antiandrogens could be enhanced by combinatorial administration with agents that increase oxidative stress in prostate cancer cells.
View Publication
Fusi A et al. (AUG 2010)
Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 21 8 1734--5
Monitoring of circulating tumor cells in a patient with synchronous metastatic melanoma and colon carcinoma.
Monitoring the systemic human memory B cell compartment of melanoma patients for anti-tumor IgG antibodies.
Melanoma,a potentially lethal skin cancer,is widely thought to be immunogenic in nature. While there has been much focus on T cell-mediated immune responses,limited knowledge exists on the role of mature B cells. We describe an approach,including a cell-based ELISA,to evaluate mature IgG antibody responses to melanoma from human peripheral blood B cells. We observed a significant increase in antibody responses from melanoma patients (n = 10) to primary and metastatic melanoma cells compared to healthy volunteers (n = 10) (Ptextless0.0001). Interestingly,we detected a significant reduction in antibody responses to melanoma with advancing disease stage in our patient cohort (n = 21) (Ptextless0.0001). Overall,28% of melanoma patient-derived B cell cultures (n = 1,800) compared to 2% of cultures from healthy controls (n = 600) produced antibodies that recognized melanoma cells. Lastly,a patient-derived melanoma-specific monoclonal antibody was selected for further study. This antibody effectively killed melanoma cells in vitro via antibody-mediated cellular cytotoxicity. These data demonstrate the presence of a mature systemic B cell response in melanoma patients,which is reduced with disease progression,adding to previous reports of tumor-reactive antibodies in patient sera,and suggesting the merit of future work to elucidate the clinical relevance of activating humoral immune responses to cancer.
View Publication
R. A. Wilcox et al. (OCT 2009)
Blood 114 14 2936--44
Monocytes promote tumor cell survival in T-cell lymphoproliferative disorders and are impaired in their ability to differentiate into mature dendritic cells.
A variety of nonmalignant cells present in the tumor microenvironment promotes tumorigenesis by stimulating tumor cell growth and metastasis or suppressing host immunity. The role of such stromal cells in T-cell lymphoproliferative disorders is incompletely understood. Monocyte-derived cells (MDCs),including professional antigen-presenting cells such as dendritic cells (DCs),play a central role in T-cell biology. Here,we provide evidence that monocytes promote the survival of malignant T cells and demonstrate that MDCs are abundant within the tumor microenvironment of T cell-derived lymphomas. Malignant T cells were observed to remain viable during in vitro culture with autologous monocytes,but cell death was significantly increased after monocyte depletion. Furthermore,monocytes prevent the induction of cell death in T-cell lymphoma lines in response to either serum starvation or doxorubicin,and promote the engraftment of these cells in nonobese diabetic/severe combined immunodeficient mice. Monocytes are actively recruited to the tumor microenvironment by CCL5 (RANTES),where their differentiation into mature DCs is impaired by tumor-derived interleukin-10. Collectively,the data presented demonstrate a previously undescribed role for monocytes in T-cell lymphoproliferative disorders.
View Publication
Keysar SB and Jimeno A (SEP 2010)
Molecular cancer therapeutics 9 9 2450--7
More than markers: biological significance of cancer stem cell-defining molecules.
Small populations within an increasing array of solid tumors,labeled cancer stem cells (CSC) or tumor-initiating cells (TIC),have the ability to differentiate,self-renew,and replicate the original tumor in vivo. To date,these cells have been distinguished from the bulk-tumor population by the expression pattern of cell-surface proteins (e.g.,CD24,CD44,CD133) and cellular activities,such as the efflux of Hoechst dye or aldehyde dehydrogenase activity. Recent data have shown that these markers are inducible by exposure to anticancer agents; this finding highlights not only the potential fluidity of the CSC compartment,but also the functionality of these markers. The involvement of CD44 in invasion,adhesion,and metastasis,or the role of CD24 in modulation of src,FAK,and GLI1 are examples of these relevant roles. Instead of looking solely at the marker expression in these populations,we hope to clarify the biologically significant roles these markers and activities play in tumor progression,metastases,and as possible targets for therapy.
View Publication
Zhao Q et al. (JAN 2015)
Proceedings of the National Academy of Sciences of the United States of America 112 2 530--535
MSCs derived from iPSCs with a modified protocol are tumor-tropic but have much less potential to promote tumors than bone marrow MSCs.
Mesenchymal stem or stromal cells (MSCs) have many potential therapeutic applications including therapies for cancers and tissue damages caused by cancers or radical cancer treatments. However,tissue-derived MSCs such as bone marrow MSCs (BM-MSCs) may promote cancer progression and have considerable donor variations and limited expandability. These issues hinder the potential applications of MSCs,especially those in cancer patients. To circumvent these issues,we derived MSCs from transgene-free human induced pluripotent stem cells (iPSCs) efficiently with a modified protocol that eliminated the need of flow cytometric sorting. Our iPSC-derived MSCs were readily expandable,but still underwent senescence after prolonged culture and did not form teratomas. These iPSC-derived MSCs homed to cancers with efficiencies similar to BM-MSCs but were much less prone than BM-MSCs to promote the epithelial-mesenchymal transition,invasion,stemness,and growth of cancer cells. The observations were probably explained by the much lower expression of receptors for interleukin-1 and TGFβ,downstream protumor factors,and hyaluronan and its cofactor TSG6,which all contribute to the protumor effects of BM-MSCs. The data suggest that iPSC-derived MSCs prepared with the modified protocol are a safer and better alternative to BM-MSCs for therapeutic applications in cancer patients. The protocol is scalable and can be used to prepare the large number of cells required for off-the-shelf" therapies and bioengineering applications."
View Publication
Zhao L et al. ( 2014)
International journal of clinical and experimental medicine 7 2 337--347
mTOR inhibitor AZD8055 inhibits proliferation and induces apoptosis in laryngeal carcinoma.
The mammalian target of rapamycin (mTOR) kinase forms two multiprotein complexes,mTORC1 and mTORC2,which regulate cell growth,survival,and autophagy. Allosteric inhibitors of mTORC1,such as rapamycin,have been extensively used to study tumor cell growth,proliferation,and autophagy but have shown only limited clinical utility. Here,we describe AZD8055,a novel ATP-competitive inhibitor of mTOR kinase activity,against all class I phosphatidylinositol3-kinase (PI3K) and other members of the PI3K-like kinase family. The study was to determine the effect of AZD8055 on proliferation and apoptosis on Hep-2,a human laryngeal cancer cell line and to investigate the underlying mechanism(s) of action. Hep-2 cells were treated with AZD8055 for 24,48 or 72 h. MTT was used to determine cell proliferation. Rhodamine 123 and TUNEL staining were used to determine mitochondrial membrane potential and cell apoptosis analyzed by fluorescence-activated cell sorting (FACS). Protein expressions were examined by western blotting. Treatment with AZD8055 inhibited proliferation and induced apoptosis in Hep-2 cells in a dose- and time-dependent manner. During the prolonged treatment with AZD8055,AZD8055 inhibits the mammalian target of rapamycin mTOR. Further experiments showed which signaling cascade p-4EBP1 and substrate EIF4E as well as downstream proteins were down regulated. Furthermore,our study showed that the expression profiles of various BH3-only proteins including Bid,Bad,and Bim,apoptosis regulatory protein cleaved caspase3 was up regulated in a time-dependent manner in Hep-2 cells treated with AZD8055. Thus,in vitro,AZD8055 potently inhibits proliferation and induces apoptosis in head and neck squamous cell carcinoma.
View Publication
Lane HA et al. ( 2009)
Clinical cancer research : an official journal of the American Association for Cancer Research 15 5 1612--1622
mTOR inhibitor RAD001 (everolimus) has antiangiogenic/vascular properties distinct from a VEGFR tyrosine kinase inhibitor.
PURPOSE: Comparison of the antiangiogenic/vascular properties of the oral mammalian target of rapamycin (mTOR) inhibitor RAD001 (everolimus) and the vascular endothelial growth factor receptor (VEGFR) inhibitor vatalanib (PTK/ZK). EXPERIMENTAL DESIGN: Antiproliferative activity against various tumor histotypes and downstream effects on the mTOR pathway were measured in vitro. In vivo,antitumor activity,plasma,and tumor RAD001 levels were measured. Activity in several different angiogenic/vascular assays in vitro and in vivo was assessed and compared with PTK/ZK. RESULTS: RAD001 inhibited proliferation in vitro (IC50 valuestextless1 nmol/L to textgreater1 micromol/L),and in sensitive and insensitive tumor cells,pS6 kinase and 4E-BP1 were inhibited. Activity in vitro did not correlate with activity in vivo and significant responses were seen in tumors with IC50 valuestextgreater10-fold higher than tumor RAD001 concentrations. In vitro,RAD001 inhibited the proliferation of VEGF-stimulated and fibroblast growth factor-stimulated human endothelial cells but not dermal fibroblasts and impaired VEGF release from both sensitive and insensitive tumor cells but did not inhibit migration of human endothelial cells. In vivo,in tumor models derived from either sensitive or insensitive cells,RAD001 reduced Tie-2 levels,the amount of mature and immature vessels,total plasma,and tumor VEGF. RAD001 did not affect blood vessel leakiness in normal vasculature acutely exposed to VEGF nor did it affect tumor vascular permeability (Ktrans) as measured by dynamic contrast-enhanced magnetic resonance imaging. However,the pan-VEGFR inhibitor PTK/ZK inhibited endothelial cell migration and vascular permeability but had less effect on mature vessels compared with RAD001. CONCLUSIONS: VEGFR and mTOR inhibitors show similar but also distinct effects on tumor vascular biology,which has implications for their clinical activity alone or in combination.
View Publication
Leong SM et al. (OCT 2010)
Blood 116 17 3286--96
Mutant nucleophosmin deregulates cell death and myeloid differentiation through excessive caspase-6 and -8 inhibition.
In up to one-third of patients with acute myeloid leukemia,a C-terminal frame-shift mutation results in abnormal and abundant cytoplasmic accumulation of the usually nucleoli-bound protein nucleophosmin (NPM),and this is thought to function in cancer pathogenesis. Here,we demonstrate a gain-of-function role for cytoplasmic NPM in the inhibition of caspase signaling. The NPM mutant specifically inhibits the activities of the cell-death proteases,caspase-6 and -8,through direct interaction with their cleaved,active forms,but not the immature procaspases. The cytoplasmic NPM mutant not only affords protection from death ligand-induced cell death but also suppresses caspase-6/-8-mediated myeloid differentiation. Our data hence provide a potential explanation for the myeloid-specific involvement of cytoplasmic NPM in the leukemogenesis of a large subset of acute myeloid leukemia.
View Publication