Davies BR et al. ( 2007)
Molecular cancer therapeutics 6 8 2209--2219
AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical
Constitutive activation of the extracellular signal-regulated kinase 1/2 (ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway in human cancers is often associated with mutational activation of BRAF or RAS. MAPK/ERK kinase 1/2 kinases lie downstream of RAS and BRAF and are the only acknowledged activators of ERK1/2,making them attractive targets for therapeutic intervention. AZD6244 (ARRY-142886) is a potent,selective,and ATP-uncompetitive inhibitor of MAPK/ERK kinase 1/2. In vitro cell viability inhibition screening of a tumor cell line panel found that lines harboring BRAF or RAS mutations were more likely to be sensitive to AZD6244. The in vivo mechanisms by which AZD6244 inhibits tumor growth were investigated. Chronic dosing with 25 mg/kg AZD6244 bd resulted in suppression of growth of Colo-205,Calu-6,and SW-620 xenografts,whereas an acute dose resulted in significant inhibition of ERK1/2 phosphorylation. Increased cleaved caspase-3,a marker of apoptosis,was detected in Colo-205 and Calu-6 but not in SW-620 tumors where a significant decrease in cell proliferation was detected. Chronic dosing of AZD6244 induced a morphologic change in SW-620 tumors to a more differentiated phenotype. The potential of AZD6244 in combination with cytotoxic drugs was evaluated in mice bearing SW-620 xenografts. Treatment with tolerated doses of AZD6244 and either irinotecan or docetaxel resulted in significantly enhanced antitumor efficacy relative to that of either agent alone. These results indicate that AZD6244 has potential to inhibit proliferation and induce apoptosis and differentiation,but the response varies between different xenografts. Moreover,enhanced antitumor efficacy can be obtained by combining AZD6244 with the cytotoxic drugs irinotecan or docetaxel.
View Publication
Lagadinou ED et al. (MAR 2013)
Cell stem cell 12 3 329--41
BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells.
Most forms of chemotherapy employ mechanisms involving induction of oxidative stress,a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However,recent studies have shown that relative redox levels in primary tumors can be heterogeneous,suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies,we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First,the majority of functionally defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed ROS-low"). Second�
View Publication
Dierov J et al. (FEB 2009)
Leukemia 23 2 279--86
BCR/ABL induces chromosomal instability after genotoxic stress and alters the cell death threshold.
Earlier reports have suggested that the BCR/ABL oncogene,associated with chronic myeloid leukemia,induces a mutator phenotype; however,it is unclear whether this leads to long-term changes in chromosomes and whether the phenotype is found in primary chronic myelogeneous leukemia (CML) cells. We have addressed both these issues. BCR/ABL-expressing cell lines show an increase in DNA breaks after treatment with etoposide as compared to control cells. However,although BCR/ABL-expressing cell lines have an equivalent cell survival,they have an increase in chromosomal translocations after DNA repair as compared to control cells. This demonstrates that BCR/ABL expression decreases the fidelity of DNA repair. To see whether this is true in primary CML samples,normal CD34+ progenitor cells and CML progenitor cells were treated with etoposide. CML progenitor cells have equivalent survival but have an increase in DNA double-strand breaks (DSBs). Spectral karyotyping demonstrates new chromosomal translocations in CML cells,but not normal progenitor cells,consistent with error-prone DNA repair. Taken together,these data demonstrate that BCR/ABL enhances the accumulation of DSBs and alters the apoptotic threshold in CML leading to error-prone DNA repair.
View Publication
Weisberg E et al. (MAR 2007)
Blood 109 5 2112--20
Beneficial effects of combining nilotinib and imatinib in preclinical models of BCR-ABL+ leukemias.
Drug resistance resulting from emergence of imatinib-resistant BCR-ABL point mutations is a significant problem in advanced-stage chronic myelogenous leukemia (CML). The BCR-ABL inhibitor,nilotinib (AMN107),is significantly more potent against BCR-ABL than imatinib,and is active against many imatinib-resistant BCR-ABL mutants. Phase 1/2 clinical trials show that nilotinib can induce remissions in patients who have previously failed imatinib,indicating that sequential therapy with these 2 agents has clinical value. However,simultaneous,rather than sequential,administration of 2 BCR-ABL kinase inhibitors is attractive for many reasons,including the theoretical possibility that this could reduce emergence of drug-resistant clones. Here,we show that exposure of a variety of BCR-ABL+ cell lines to imatinib and nilotinib results in additive or synergistic cytotoxicity,including testing of a large panel of cells expressing BCR-ABL point mutations causing resistance to imatinib in patients. Further,using a highly quantifiable bioluminescent in vivo model,drug combinations were at least additive in antileukemic activity,compared with each drug alone. These results suggest that despite binding to the same site in the same target kinase,the combination of imatinib and nilotinib is highly efficacious in these models,indicating that clinical testing of combinations of BCR-ABL kinase inhibitors is warranted.
View Publication
Kim A et al. (FEB 2007)
Blood 109 4 1687--91
Beta common receptor inactivation attenuates myeloproliferative disease in Nf1 mutant mice.
Neurofibromatosis type 1 (NF1) syndrome is caused by germline mutations in the NF1 tumor suppressor,which encodes neurofibromin,a GTPase activating protein for Ras. Children with NF1 are predisposed to juvenile myelomonocytic leukemia (JMML) and lethally irradiated mice given transplants with homozygous Nf1 mutant (Nf1-/-) hematopoietic stem cells develop a fatal myeloproliferative disorder (MPD) that models JMML. We investigated the requirement for signaling through the GM-CSF receptor to initiate and sustain this MPD by generating Nf1 mutant hematopoietic cells lacking the common beta chain (Beta c) of the GM-CSF receptor. Mice reconstituted with Nf1-/-,beta c-/- stem cells did not develop evidence of MPD despite the presence of increased number of immature hematopoietic progenitors in the bone marrow. Interestingly,when the Mx1-Cre transgene was used to inactivate a conditional Nf1 mutant allele in hematopoietic cells,concomitant loss of beta c-/- reduced the severity of the MPD,but did not abrogate it. Whereas inhibiting GM-CSF signaling may be of therapeutic benefit in JMML,our data also demonstrate aberrant proliferation of Nf1-/-myeloid progenitors that is independent of signaling through the GM-CSF receptor.
View Publication
Richmond MH (JAN 1975)
Methods in enzymology 43 4 672--7
Biologic and genetic characterization of the novel amyloidogenic lambda light chain-secreting human cell lines, ALMC-1 and ALMC-2.
Primary systemic amyloidosis (AL) is a rare monoclonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin (Ig) light chains (LC) in vital organs throughout the body. To our knowledge,no cell lines have ever been established from AL patients. Here we describe the establishment of the ALMC-1 and ALMC-2 cell lines from an AL patient. Both cell lines exhibit a PC phenotype and display cytokine-dependent growth. Using a comprehensive genetic approach,we established the genetic relationship between the cell lines and the primary patient cells,and we were also able to identify new genetic changes accompanying tumor progression that may explain the natural history of this patient's disease. Importantly,we demonstrate that free lambda LC secreted by both cell lines contained a beta structure and formed amyloid fibrils. Despite absolute Ig LC variable gene sequence identity,the proteins show differences in amyloid formation kinetics that are abolished by the presence of Na(2)SO(4). The formation of amyloid fibrils from these naturally secreting human LC cell lines is unprecedented. Moreover,these cell lines will provide an invaluable tool to better understand AL,from the combined perspectives of amyloidogenic protein structure and amyloid formation,genetics,and cell biology.
View Publication
Raynaud FI et al. ( 2009)
Molecular cancer therapeutics 8 7 1725--1738
Biological properties of potent inhibitors of class I phosphatidylinositide 3-kinases: from PI-103 through PI-540, PI-620 to the oral agent GDC-0941.
The phosphatidylinositide 3-kinase pathway is frequently deregulated in human cancers and inhibitors offer considerable therapeutic potential. We previously described the promising tricyclic pyridofuropyrimidine lead and chemical tool compound PI-103. We now report the properties of the pharmaceutically optimized bicyclic thienopyrimidine derivatives PI-540 and PI-620 and the resulting clinical development candidate GDC-0941. All four compounds inhibited phosphatidylinositide 3-kinase p110alpha with IC(50) textless or = 10 nmol/L. Despite some differences in isoform selectivity,these agents exhibited similar in vitro antiproliferative properties to PI-103 in a panel of human cancer cell lines,with submicromolar potency in PTEN-negative U87MG human glioblastoma cells and comparable phosphatidylinositide 3-kinase pathway modulation. PI-540 and PI-620 exhibited improvements in solubility and metabolism with high tissue distribution in mice. Both compounds gave improved antitumor efficacy over PI-103,following i.p. dosing in U87MG glioblastoma tumor xenografts in athymic mice,with treated/control values of 34% (66% inhibition) and 27% (73% inhibition) for PI-540 (50 mg/kg b.i.d.) and PI-620 (25 mg/kg b.i.d.),respectively. GDC-0941 showed comparable in vitro antitumor activity to PI-103,PI-540,and PI-620 and exhibited 78% oral bioavailability in mice,with tumor exposure above 50% antiproliferative concentrations for textgreater8 hours following 150 mg/kg p.o. and sustained phosphatidylinositide 3-kinase pathway inhibition. These properties led to excellent dose-dependent oral antitumor activity,with daily p.o. dosing at 150 mg/kg achieving 98% and 80% growth inhibition of U87MG glioblastoma and IGROV-1 ovarian cancer xenografts,respectively. Together,these data support the development of GDC-0941 as a potent,orally bioavailable inhibitor of phosphatidylinositide 3-kinase. GDC-0941 has recently entered phase I clinical trials.
View Publication
Brandl M et al. (AUG 1999)
Experimental hematology 27 8 1264--70
Bispecific antibody fragments with CD20 X CD28 specificity allow effective autologous and allogeneic T-cell activation against malignant cells in peripheral blood and bone marrow cultures from patients with B-cell lineage leukemia and lymphoma.
Bispecific antibodies directed against tumor-associated target antigens and to surface receptors mediating T-cell activation,such as the TCR/CD3 complex and the costimulatory receptor CD28,are capable of mediating T-cell activation resulting in tumor cell killing. In this study,we used the B-cell-associated antigens CD19 and CD20 as target structures on human leukemic cells. We found that a combination of bispecific antibody fragments (bsFab2) with target x CD3 and target x CD28 specificity induces vigorous autologous T-cell activation and killing of malignant cells in peripheral blood and bone marrow cultures from patients with chronic lymphocytic leukemia and follicular lymphoma. The bsFab2 targeting CD20 were considerably more effective than those binding to CD19. The colony-forming capacity of treated bone marrow was impaired due to large amounts of tumor necrosis factor alpha produced during bsFab2-induced T-cell activation. Neutralizing tumor necrosis factor alpha antibodies were found to reverse this negative effect without affecting T-cell activation and tumor cell killing. CD20 x CD28 bsFab2,when used alone rather than in combination,markedly improved the recognition of leukemic cells by allogeneic T cells. Therefore,these reagents may be capable of enhancing the immunogenicity of leukemic cells in general and,in particular,of increasing the antileukemic activity of allogeneic donor buffy coat cells in relapsed bone marrow transplanted patients.
View Publication
Boissier S et al. (JUN 2000)
Cancer research 60 11 2949--54
Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases.
The molecular mechanisms by which tumor cells metastasize to bone are likely to involve invasion,cell adhesion to bone,and the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are,therefore,used in the treatment of patients with osteolytic metastases. However,an added beneficial effect of BPs may be direct antitumor activity. We previously reported that BPs inhibit breast and prostate carcinoma cell adhesion to bone (Boissier et al.,Cancer Res.,57: 3890-3894,1997). Here,we provided evidence that BP pretreatment of breast and prostate carcinoma cells inhibited tumor cell invasion in a dose-dependent manner. The order of potency for four BPs in inhibiting tumor cell invasion was: zoledronate textgreater ibandronate textgreater NE-10244 (active pyridinium analogue of risedronate) textgreater clodronate. In addition,NE-58051 (the inactive pyridylpropylidene analogue of risedronate) had no inhibitory effect,whereas NE-10790 (a phosphonocarboxylate analogue of risedronate in which one of the phosphonate groups is substituted by a carboxyl group) inhibited tumor cell invasion to an extent similar to that observed with NE-10244,indicating that the inhibitory activity of BPs on tumor cells involved the R2 chain of the molecule. BPs did not induce apoptosis in tumor cells,nor did they inhibit tumor cell migration at concentrations that did inhibit tumor cell invasion. However,although BPs did not interfere with the production of matrix metalloproteinases (MMPs) by tumor cells,they inhibited their proteolytic activity. The inhibitory effect of BPs on MMP activity was completely reversed in the presence of an excess of zinc. In addition,NE-10790 did not inhibit MMP activity,suggesting that phosphonate groups of BPs are responsible for the chelation of zinc and the subsequent inhibition of MMP activity. In conclusion,our results provide evidence for a direct cellular effect of BPs in preventing tumor cell invasion and an inhibitory effect of BPs on the proteolytic activity of MMPs through zinc chelation. These results suggest,therefore,that BPs may be useful agents for the prophylactic treatment of patients with cancers that are known to preferentially metastasize to bone.
View Publication
Liu Z et al. (FEB 2012)
Journal of stem cell research & therapy 2 1 1--8
Blockade of Autocrine TGF-$$ Signaling Inhibits Stem Cell Phenotype, Survival, and Metastasis of Murine Breast Cancer Cells.
Transforming growth factor beta (TGF-$$) signaling has been implicated in driving tumor progression and metastasis by inducing stem cell-like features in some human cancer cell lines. In this study,we have utilized a novel murine cell line NMuMG-ST,which acquired cancer stem cell (CSC) phenotypes during spontaneous transformation of the untransformed murine mammary cell line NMuMG,to investigate the role of autocrine TGF-$$ signaling in regulating their survival,metastatic ability,and the maintenance of cancer stem cell characteristics. We have retrovirally transduced a dominant-negative TGF-$$ type II receptor (DNRII) into the NMuMG-ST cell to abrogate autocrine TGF-$$ signaling. The expression of DNRII reduced TGF-$$ sensitivity of the NMuMG-ST cells in various cell-based assays. The blockade of autocrine TGF-$$ signaling reduced the ability of the cell to grow anchorage-independently and to resist serum deprivation-induced apoptosis. These phenotypes were associated with reduced levels of active and phosphorylated AKT and ERK,and Gli1 expression suggesting that these pathways contribute to the growth and survival of this model system. More interestingly,the abrogation of autocrine TGF-$$ signaling also led to the attenuation of several features associated with mammary stem cells including epithelial-mesenchymal transition,mammosphere formation,and expression of stem cell markers. When xenografted in athymic nude mice,the DNRII cells were also found to undergo apoptosis and induced significantly lower lung metastasis burden than the control cells even though they formed similar size of xenograft tumors. Thus,our results indicate that autocrine TGF-$$ signaling is involved in the maintenance and survival of stem-like cell population resulting in the enhanced metastatic ability of the murine breast cancer cells.
View Publication
Feldmann G et al. (MAR 2007)
Cancer research 67 5 2187--96
Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases: a new paradigm for combination therapy in solid cancers.
In the context of pancreatic cancer,metastasis remains the most critical determinant of resectability,and hence survival. The objective of this study was to determine whether Hedgehog (Hh) signaling plays a role in pancreatic cancer invasion and metastasis because this is likely to have profound clinical implications. In pancreatic cancer cell lines,Hh inhibition with cyclopamine resulted in down-regulation of snail and up-regulation of E-cadherin,consistent with inhibition of epithelial-to-mesenchymal transition,and was mirrored by a striking reduction of in vitro invasive capacity (P textless 0.0001). Conversely,Gli1 overexpression in immortalized human pancreatic ductal epithelial cells led to a markedly invasive phenotype (P textless 0.0001) and near total down-regulation of E-cadherin. In an orthotopic xenograft model,cyclopamine profoundly inhibited metastatic spread; only one of seven cyclopamine-treated mice developed pulmonary micrometastases versus seven of seven mice with multiple macrometastases in control animals. Combination of gemcitabine and cyclopamine completely abrogated metastases while also significantly reducing the size of primary" tumors. Gli1 levels were up-regulated in tissue samples of metastatic human pancreatic cancer samples compared with matched primary tumors. Aldehyde dehydrogenase (ALDH) overexpression is characteristic for both hematopoietic progenitors and leukemic stem cells; cyclopamine preferentially reduced "ALDH-high" cells by approximately 3-fold (P = 0.048). We confirm pharmacologic Hh pathway inhibition as a valid therapeutic strategy for pancreatic cancer and show for the first time its particular efficacy against metastatic spread. By targeting specific cellular subpopulations likely involved in tumor initiation at metastatic sites�
View Publication