Reddy K et al. (JUN 2008)
Molecular cancer research : MCR 6 6 929--36
Bone marrow subsets differentiate into endothelial cells and pericytes contributing to Ewing's tumor vessels.
Hematopoietic progenitor cells arising from bone marrow (BM) are known to contribute to the formation and expansion of tumor vasculature. However,whether different subsets of these cells have different roles in this process is unclear. To investigate the roles of BM-derived progenitor cell subpopulations in the formation of tumor vasculature in a Ewing's sarcoma model,we used a functional assay based on endothelial cell and pericyte differentiation in vivo. Fluorescence-activated cell sorting of human cord blood/BM or mouse BM from green fluorescent protein transgenic mice was used to isolate human CD34+/CD38(-),CD34+/CD45+,and CD34(-)/CD45+ cells and mouse Sca1+/Gr1+,Sca1(-)/Gr1+,VEGFR1+,and VEGFR2+ cells. Each of these progenitor subpopulations was separately injected intravenously into nude mice bearing Ewing's sarcoma tumors. Tumors were resected 1 week later and analyzed using immunohistochemistry and confocal microscopy for the presence of migrated progenitor cells expressing endothelial,pericyte,or inflammatory cell surface markers. We showed two distinct patterns of stem cell infiltration. Human CD34+/CD45+ and CD34+/CD38(-) and murine VEGFR2+ and Sca1+/Gr1+ cells migrated to Ewing's tumors,colocalized with the tumor vascular network,and differentiated into cells expressing either endothelial markers (mouse CD31 or human vascular endothelial cadherin) or the pericyte markers desmin and alpha-smooth muscle actin. By contrast,human CD34(-)/CD45+ and mouse Sca1(-)/Gr1+ cells migrated predominantly to sites outside of the tumor vasculature and differentiated into monocytes/macrophages expressing F4/80 or CD14. Our data indicate that only specific BM stem/progenitor subpopulations participate in Ewing's sarcoma tumor vasculogenesis.
View Publication
Piccirillo SGM et al. (DEC 2006)
Nature 444 7120 761--5
Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells.
Transformed,oncogenic precursors,possessing both defining neural-stem-cell properties and the ability to initiate intracerebral tumours,have been identified in human brain cancers. Here we report that bone morphogenetic proteins (BMPs),amongst which BMP4 elicits the strongest effect,trigger a significant reduction in the stem-like,tumour-initiating precursors of human glioblastomas (GBMs). Transient in vitro exposure to BMP4 abolishes the capacity of transplanted GBM cells to establish intracerebral GBMs. Most importantly,in vivo delivery of BMP4 effectively blocks the tumour growth and associated mortality that occur in 100% of mice after intracerebral grafting of human GBM cells. We demonstrate that BMPs activate their cognate receptors (BMPRs) and trigger the Smad signalling cascade in cells isolated from human glioblastomas (GBMs). This is followed by a reduction in proliferation,and increased expression of markers of neural differentiation,with no effect on cell viability. The concomitant reduction in clonogenic ability,in the size of the CD133+ population and in the growth kinetics of GBM cells indicates that BMP4 reduces the tumour-initiating cell pool of GBMs. These findings show that the BMP-BMPR signalling system--which controls the activity of normal brain stem cells--may also act as a key inhibitory regulator of tumour-initiating,stem-like cells from GBMs and the results also identify BMP4 as a novel,non-cytotoxic therapeutic effector,which may be used to prevent growth and recurrence of GBMs in humans.
View Publication
Perez LE et al. (MAR 2010)
European journal of haematology 84 3 212--22
Bortezomib restores stroma-mediated APO2L/TRAIL apoptosis resistance in multiple myeloma.
OBJECTIVES: Hematopoietic stroma promotes resistance to immune control by APO2L/TRAIL in multiple myeloma (MM) cells in part by increasing synthesis of the anti-apoptotic protein c-FLIP. Here,we tested whether bortezomib can reverse the APO2L/TRAIL environmental mediated-immune resistance (EM-IR). MATERIAL AND METHODS: MM cell lines (RPMI 8226 and U266) and CD138+ patient's MM cells were directly adhered to HS5 stroma exposed to HS5 or bone marrow stroma of patients with MM released soluble factors in a transwell system. Cells were treated with either APO2L/TRAIL (10 ng/mL),bortezomib (10 nm) or both. RESULTS: Pretreatment with bortezomib effectively overcomes APO2L/TRAIL apoptosis resistance in myeloma cell lines and in CD138+ cells while directly adhered or in transwell assay. Bortezomib was not cytotoxic to HS5 stroma cells and only altered monocyte chemotactic protein-2-3 and IL-10 levels in the stroma-myeloma milieu. Factors released by HS5 stroma increased expression of c-FLIP,induced STAT-3 and ERK phosphorylation and reduced DR4 receptor expression in MM cells. HS5 stroma-released factor(s) induced NF-kappaB activation after 20 h exposure in association with an enhanced c-FLIP transcription. Bortezomib effectively reduced c-FLIP protein expression without affecting other proteins. Bortezomib also increased DR4 and DR5 expression in the presence of stroma. CONCLUSIONS: These findings provide the rationale to combine bortezomib and APO2L/TRAIL to disrupt the influence of the stroma microenvironment on MM cells.
View Publication
Liu S et al. (FEB 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 5 1680--5
BRCA1 regulates human mammary stem/progenitor cell fate.
Although it is well established that women with germ-line mutations in the BRCA1 gene have a greatly increased lifetime incidence of breast and ovarian cancer,the molecular mechanisms responsible for this tissue-specific carcinogenesis remain undefined. The majority of these breast cancers are of the basal-like phenotype characterized by lack of expression of ER,PR,and ERBB2. Because this phenotype has been proposed to resemble that of normal breast stem cells,we examined the role of BRCA1 in human mammary stem cell fate. Using both in vitro systems and a humanized NOD/SCID mouse model,we demonstrate that BRCA1 expression is required for the differentiation of ER-negative stem/progenitor cells to ER-positive luminal cells. Knockdown of BRCA1 in primary breast epithelial cells leads to an increase in cells displaying the stem/progenitor cell marker ALDH1 and a decrease in cells expressing luminal epithelial markers and estrogen receptor. In breast tissues from women with germ-line BRCA1 mutations,but not normal controls,we detect entire lobules that,although histologically normal,are positive for ALDH1 expression but are negative for the expression of ER. Loss of heterozygosity for BRCA1 was documented in these ALDH1-positive lobules but not in adjacent ALDH1-negative lobules. Taken together,these studies demonstrate that BRCA1 plays a critical role in the differentiation of ER-negative stem/progenitor cells to ER-positive luminal cells. Because BRCA1 also plays a role in DNA repair,our work suggests that loss of BRCA1 may result in the accumulation of genetically unstable breast stem cells,providing prime targets for further carcinogenic events.
View Publication
Charafe-Jauffret E et al. (FEB 2009)
Cancer research 69 4 1302--13
Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature.
Tumors may be initiated and maintained by a cellular subcomponent that displays stem cell properties. We have used the expression of aldehyde dehydrogenase as assessed by the ALDEFLUOR assay to isolate and characterize cancer stem cell (CSC) populations in 33 cell lines derived from normal and malignant mammary tissue. Twenty-three of the 33 cell lines contained an ALDEFLUOR-positive population that displayed stem cell properties in vitro and in NOD/SCID xenografts. Gene expression profiling identified a 413-gene CSC profile that included genes known to play a role in stem cell function,as well as genes such as CXCR1/IL-8RA not previously known to play such a role. Recombinant interleukin-8 (IL-8) increased mammosphere formation and the ALDEFLUOR-positive population in breast cancer cell lines. Finally,we show that ALDEFLUOR-positive cells are responsible for mediating metastasis. These studies confirm the hierarchical organization of immortalized cell lines,establish techniques that can facilitate the characterization of regulatory pathways of CSCs,and identify potential stem cell markers and therapeutic targets.
View Publication
Liu S et al. (JAN 2011)
Cancer research 71 2 614--24
Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks.
We have used in vitro and mouse xenograft models to examine the interaction between breast cancer stem cells (CSC) and bone marrow-derived mesenchymal stem cells (MSC). We show that both of these cell populations are organized in a cellular hierarchy in which primitive aldehyde dehydrogenase expressing mesenchymal cells regulate breast CSCs through cytokine loops involving IL6 and CXCL7. In NOD/SCID mice,labeled MSCs introduced into the tibia traffic to sites of growing breast tumor xenografts where they accelerated tumor growth by increasing the breast CSC population. With immunochemistry,we identified MSC-CSC niches in these tumor xenografts as well as in frozen sections from primary human breast cancers. Bone marrow-derived MSCs may accelerate human breast tumor growth by generating cytokine networks that regulate the CSC population.
View Publication
Previdi S et al. ( 2012)
Molecular cancer therapeutics 11 1 214--223
Breast cancer-derived bone metastasis can be effectively reduced through specific c-MET inhibitor tivantinib (ARQ 197) and shRNA c-MET knockdown.
Breast cancer exhibits a propensity to metastasize to bone,resulting in debilitating skeletal complications associated with significant morbidity and poor prognosis. The cross-talk between metastatic cancer cells and bone is critical to the development and progression of bone metastases. We have shown the involvement of the HGF/c-MET system in tumor-bone interaction contributing to human breast cancer metastasis. Therefore,disruption of HGF/c-MET signaling is a potential targeted approach to treating metastatic bone disease. In this study,we evaluated the effects of c-MET inhibition by both an oral,selective,small-molecule c-MET inhibitor,tivantinib,and a specific short hairpin RNA (shRNA) against c-MET in a mouse model of human breast cancer. Tivantinib exhibited dose-dependent antimetastatic activity in vivo,and the 120 mg/kg dose,proven to be suboptimal in reducing subcutaneous tumor growth,induced significant inhibition of metastatic growth of breast cancer cells in bone and a noteworthy reduction of tumor-induced osteolysis. shRNA-mediated c-MET silencing did not affect in vitro proliferation of bone metastatic cells,but significantly reduced their migration,and this effect was further enhanced by tivantinib. Both observations were confirmed in vivo. Indeed,more pronounced tumor growth suppression with concomitant marked decreases of lytic lesions and prolongation of survival were achieved by dual c-MET inhibition using both tivantinib and RNA interference strategies. Overall,our findings highlighted the effectiveness of c-MET inhibition in delaying the onset and progression of bone metastases and strongly suggest that targeting c-MET may have promising therapeutic value in the treatment of bone metastases from breast cancer.
View Publication
Jiao X et al. (MAR 2010)
The Journal of biological chemistry 285 11 8218--26
c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion.
The molecular mechanisms governing breast tumor cellular self-renewal contribute to breast cancer progression and therapeutic resistance. The ErbB2 oncogene is overexpressed in approximately 30% of human breast cancers. c-Jun,the first cellular proto-oncogene,is overexpressed in human breast cancer. However,the role of endogenous c-Jun in mammary tumor progression is unknown. Herein,transgenic mice expressing the mammary gland-targeted ErbB2 oncogene were crossed with c-jun(f/f) transgenic mice to determine the role of endogenous c-Jun in mammary tumor invasion and stem cell function. The excision of c-jun by Cre recombinase reduced cellular migration,invasion,and mammosphere formation of ErbB2-induced mammary tumors. Proteomic analysis identified a subset of secreted proteins (stem cell factor (SCF) and CCL5) induced by ErbB2 expression that were dependent upon endogenous c-Jun expression. SCF and CCL5 were identified as transcriptionally induced by c-Jun. CCL5 rescued the c-Jun-deficient breast tumor cellular invasion phenotype. SCF rescued the c-Jun-deficient mammosphere production. Endogenous c-Jun thus contributes to ErbB2-induced mammary tumor cell invasion and self-renewal.
View Publication
Niu C et al. (SEP 2009)
Blood 114 10 2087--96
c-Myc is a target of RNA-binding motif protein 15 in the regulation of adult hematopoietic stem cell and megakaryocyte development.
RNA-binding motif protein 15 (RBM15) is involved in the RBM15-megakaryoblastic leukemia 1 fusion in acute megakaryoblastic leukemia. Although Rbm15 has been reported to be required for B-cell differentiation and to inhibit myeloid and megakaryocytic expansion,it is not clear what the normal functions of Rbm15 are in the regulation of hematopoietic stem cell (HSC) and megakaryocyte development. In this study,we report that Rbm15 may function in part through regulation of expression of the proto-oncogene c-Myc. Similar to c-Myc knockout (c-Myc-KO) mice,long-term (LT) HSCs are significantly increased in Rbm15-KO mice due to an apparent LT-HSC to short-term HSC differentiation defect associated with abnormal HSC-niche interactions caused by increased N-cadherin and beta(1) integrin expression on mutant HSCs. Both serial transplantation and competitive reconstitution capabilities of Rbm15-KO LT-HSCs are greatly compromised. Rbm15-KO and c-Myc-KO mice also share related abnormalities in megakaryocyte development,with mutant progenitors producing increased,abnormally small low-ploidy megakaryocytes. Consistent with a possible functional interplay between Rbm15 and c-Myc,the megakaryocyte increase in Rbm15-KO mice could be partially reversed by ectopic c-Myc. Thus,Rbm15 appears to be required for normal HSC-niche interactions,for the ability of HSCs to contribute normally to adult hematopoiesis,and for normal megakaryocyte development; these effects of Rbm15 on hematopoiesis may be mediated at least in part by c-Myc.
View Publication
Wu H et al. (SEP 2011)
Journal of breast cancer 14 3 175--80
Can CD44+/CD24- Tumor Cells Be Used to Determine the Extent of Breast Cancer Invasion Following Neoadjuvant Chemotherapy?
PURPOSE: To investigate the distribution of CD44(+)/CD24(-) cells in breast cancers in relation to tumor size before and after the administration of neoadjuvant chemotherapy. METHODS: CD44(+)/CD24(-) tumor cells obtained from breast cancer specimens were characterized in vivo and in vitro using tumor formation assays and mammosphere generation assays,respectively. The distribution of CD44+/CD24- tumor cells in 78 breast cancer specimens following administration of neoadjuvant chemotherapy was also evaluated using immunofluorescence assays,and this distribution was compared with the extent of tumor invasion predicted by Response Evaluation Criteria in Solid Tumours (RECIST). RESULTS: In 27/78 cases,complete remission (CR) was identified using RECIST. However,18 of these CR cases were associated with a scattered distribution of tumor stem cells in the outline of the original tumor prior to neoadjuvant chemotherapy. After neoadjuvant chemotherapy,24 cases involved cancer cells that were confined to the tumor outline,and 21 cases had tumor cells or tumor stem cells overlapping the tumor outline. In addition,there were 6 patients who were insensitive to chemotherapy,and in these cases,both cancer cells and stem cells were detected outside the contours of the tumor volume imaged prior to chemotherapy. CONCLUSION: CD44+/CD24- tumor cells may be an additional parameter to evaluate when determining the extent of breast cancer invasion.
View Publication
He K et al. (JAN 2014)
International journal of cancer 134 1 43--54
Cancer cells acquire a drug resistant, highly tumorigenic, cancer stem-like phenotype through modulation of the PI3K/Akt/β-catenin/CBP pathway.
Cancer initiation and progression have been attributed to newly discovered subpopulations of self-renewing,highly tumorigenic,drug-resistant tumor cells termed cancer stem cells. Recently,we and others reported a new phenotypic plasticity wherein highly tumorigenic,drug-resistant cell populations could arise not only from pre-existing cancer stem-like populations but also from cancer cells lacking these properties. In the current study,we hypothesized that this newfound phenotypic plasticity may be mediated by PI3K/Akt and Wnt/β-catenin signaling,pathways previously implicated in carcinogenesis,pluripotency and drug resistance. Using GFP expression,Hoechst dye exclusion and fluorescence activated cell sorting (FACS) of cancer cell lines,we identified and tracked cancer stem-like side populations (SP) of cancer cells characterized by high tumorigenicity and drug resistance. We found that pharmacological inhibition or genetic depletion of PI3K and AKT markedly reduced the spontaneous conversion of nonside population (NSP) cells into cancer stem-like SP cells,whereas PI3K/Akt activation conversely enhanced NSP to SP conversion. PI3K/AKT signaling was mediated through downstream phosphorylation of GSK3β,which led to activation and accumulation of β-catenin. Accordingly,pharmacological or genetic perturbation of GSK3β or β-catenin dramatically impacted conversion of NSP to SP. Further downstream,β-catenin's effects on NSP-SP equilibrium were dependent upon its interaction with CBP,a KAT3 family coactivator. These studies provide a mechanistic model wherein PI3K/Akt/β-catenin/CBP signaling mediates phenotypic plasticity in and out of a drug-resistant,highly tumorigenic state. Therefore,targeting this pathway has unique potential for overcoming the therapy resistance and disease progression attributed to the cancer stem-like phenotype.
View Publication
Ning N et al. (APR 2012)
Cancer research 72 7 1853--64
Cancer stem cell vaccination confers significant antitumor immunity.
Most studies of cancer stem cells (CSC) involve the inoculation of cells from human tumors into immunosuppressed mice,preventing an assessment on the immunologic interactions and effects of CSCs. In this study,we examined the vaccination effects produced by CSC-enriched populations from histologically distinct murine tumors after their inoculation into different syngeneic immunocompetent hosts. Enriched CSCs were immunogenic and more effective as an antigen source than unselected tumor cells in inducing protective antitumor immunity. Immune sera from CSC-vaccinated hosts contained high levels of IgG which bound to CSCs,resulting in CSC lysis in the presence of complement. CTLs generated from peripheral blood mononuclear cells or splenocytes harvested from CSC-vaccinated hosts were capable of killing CSCs in vitro. Mechanistic investigations established that CSC-primed antibodies and T cells were capable of selective targeting CSCs and conferring antitumor immunity. Together,these proof-of-concept results provide a rationale for a new type of cancer immunotherapy based on the development of CSC vaccines that can specifically target CSCs.
View Publication