Falso MJS et al. (MAR 2012)
Anticancer research 32 3 733--8
Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin.
BACKGROUND: Recurrence is a common problem in bladder cancer; this has been attributed to cancer stem cells. In this study,we characterized potential cancer stem cell populations isolated from three cell lines that demonstrate different responses to cisplatin. MATERIALS AND METHODS: The ALDEFLUOR® assay was used to isolate cells from TCCSUP,T24,and 5637 cell lines,and these cells were evaluated for their ability to form colonies,differentiate,migrate and invade. RESULTS: The cell lines demonstrate a spectrum of aldehyde dehydrogenase high (ALDH(High)) populations that correlate with resistance to cisplatin. In the two resistant cell lines,T24 and 5637,the ALDH(High) cells demonstrate increased colony formation,migration,invasion,and ability to differentiate. The resistant T24 and 5637 cell lines may serve as models to investigate alternative therapies for bladder cancer.
View Publication
文献
Rao R et al. (APR 2012)
Molecular cancer therapeutics 11 4 973--983
Combination of pan-histone deacetylase inhibitor and autophagy inhibitor exerts superior efficacy against triple-negative human breast cancer cells.
Histone deacetylase (HDAC) inhibitors (HDI) induce endoplasmic reticulum (ER) stress and apoptosis,while promoting autophagy,which promotes cancer cell survival when apoptosis is compromised. Here,we determined the in vitro and in vivo activity of the combination of the pan-HDI panobinostat and the autophagy inhibitor chloroquine against human estrogen/progesterone receptor and HER2 (triple)-negative breast cancer (TNBC) cells. Treatment of MB-231 and SUM159PT cells with panobinostat disrupted the hsp90/histone deacetylase 6/HSF1/p97 complex,resulting in the upregulation of hsp. This was accompanied by the induction of enhanced autophagic flux as evidenced by increased expression of LC3B-II and the degradation of the autophagic substrate p62. Treatment with panobinostat also induced the accumulation and colocalization of p62 with LC3B-II in cytosolic foci as evidenced by immunofluorescent confocal microscopy. Inhibition of panobinostat-induced autophagic flux by chloroquine markedly induced the accumulation of polyubiquitylated proteins and p62,caused synergistic cell death of MB-231 and SUM159PT cells,and inhibited mammosphere formation in MB-231 cells,compared with treatment with each agent alone. Finally,in mouse mammary fat pad xenografts of MB-231 cells,a tumor size-dependent induction of heat shock response,ER stress and autophagy were observed. Cotreatment with panobinostat and chloroquine resulted in reduced tumor burden and increased the survival of MB-231 breast cancer xenografts. Collectively,our findings show that cotreatment with an autophagy inhibitor and pan-HDI,for example,chloroquine and panobinostat results in accumulation of toxic polyubiquitylated proteins,exerts superior inhibitory effects on TNBC cell growth,and increases the survival of TNBC xenografts.
View Publication
文献
Dowling RJO et al. ( 2012)
Journal of molecular endocrinology 48 3 R31--43
Metformin in cancer: translational challenges.
The anti-diabetic drug metformin is rapidly emerging as a potential anti-cancer agent. Metformin,effective in treating type 2 diabetes and the insulin resistance syndromes,improves insulin resistance by reducing hepatic gluconeogenesis and by enhancing glucose uptake by skeletal muscle. Epidemiological studies have consistently associated metformin use with decreased cancer incidence and cancer-related mortality. Furthermore,numerous preclinical and clinical studies have demonstrated anti-cancer effects of metformin,leading to an explosion of interest in evaluating this agent in human cancer. The effects of metformin on circulating insulin levels indicate a potential efficacy towards cancers associated with hyperinsulinaemia; however,metformin may also directly inhibit tumour growth. In this review,we describe the mechanism of action of metformin and summarise the epidemiological,clinical and preclinical evidence supporting a role for metformin in the treatment of cancer. In addition,the challenges associated with translating preclinical results into therapeutic benefit in the clinical setting will be discussed.
View Publication
文献
Koivunen P et al. (MAR 2012)
Nature 483 7390 484--8
Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation.
The identification of succinate dehydrogenase (SDH),fumarate hydratase (FH) and isocitrate dehydrogenase (IDH) mutations in human cancers has rekindled the idea that altered cellular metabolism can transform cells. Inactivating SDH and FH mutations cause the accumulation of succinate and fumarate,respectively,which can inhibit 2-oxoglutarate (2-OG)-dependent enzymes,including the EGLN prolyl 4-hydroxylases that mark the hypoxia inducible factor (HIF) transcription factor for polyubiquitylation and proteasomal degradation. Inappropriate HIF activation is suspected of contributing to the pathogenesis of SDH-defective and FH-defective tumours but can suppress tumour growth in some other contexts. IDH1 and IDH2,which catalyse the interconversion of isocitrate and 2-OG,are frequently mutated in human brain tumours and leukaemias. The resulting mutants have the neomorphic ability to convert 2-OG to the (R)-enantiomer of 2-hydroxyglutarate ((R)-2HG). Here we show that (R)-2HG,but not (S)-2HG,stimulates EGLN activity,leading to diminished HIF levels,which enhances the proliferation and soft agar growth of human astrocytes. These findings define an enantiomer-specific mechanism by which the (R)-2HG that accumulates in IDH mutant brain tumours promotes transformation and provide a justification for exploring EGLN inhibition as a potential treatment strategy.
View Publication
文献
Shetty S et al. (MAR 2012)
International journal of hematology 95 3 274--81
Utility of a column-free cell sorting system for separation of plasma cells in multiple myeloma FISH testing in clinical laboratories.
Targeted FISH analysis is an essential component of the management of plasma cell myeloma for identification of cytogenetic abnormalities. The purpose of this study was to evaluate the column-free method,RoboSep® (RS),for sorting CD138-expressing cells in bone marrow aspirates. Comparative analysis of column-based and RS methodologies was carried out on 54 paired bone marrow aspirate validation samples from patients undergoing work-up for plasma cell dyscrasia. Abnormalities detected by FISH analysis using an IGH@/CCND1 probe set were seen in 54% with RS,and 44% with column-based. We found a statistically significant difference between the yield of abnormalities detected in paired positive cases (p = 0.0001). An additional 183 consecutive post-validation samples sorted by RS showed recurrent genetic abnormalities in 85/120 (71%) of successfully sorted samples with ≥ 1% plasma cells but in none of 63 samples in which FISH analysis was completed on samples that could not be sorted due to insufficient plasma cells upon cell sorting. The column-free method successfully sorted PC,when present in ≥ 1% of cells,for detection of abnormalities by FISH. Furthermore,our data suggest that FISH analysis should not be performed on samples with an inadequate yield at the cell selection step.
View Publication
文献
Szerlip NJ et al. (FEB 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 8 3041--6
Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response.
Glioblastoma (GBM) is distinguished by a high degree of intratumoral heterogeneity,which extends to the pattern of expression and amplification of receptor tyrosine kinases (RTKs). Although most GBMs harbor RTK amplifications,clinical trials of small-molecule inhibitors targeting individual RTKs have been disappointing to date. Activation of multiple RTKs within individual GBMs provides a theoretical mechanism of resistance; however,the spectrum of functional RTK dependence among tumor cell subpopulations in actual tumors is unknown. We investigated the pattern of heterogeneity of RTK amplification and functional RTK dependence in GBM tumor cell subpopulations. Analysis of The Cancer Genome Atlas GBM dataset identified 34 of 463 cases showing independent focal amplification of two or more RTKs,most commonly platelet-derived growth factor receptor α (PDGFRA) and epidermal growth factor receptor (EGFR). Dual-color fluorescence in situ hybridization was performed on eight samples with EGFR and PDGFRA amplification,revealing distinct tumor cell subpopulations amplified for only one RTK; in all cases these predominated over cells amplified for both. Cell lines derived from coamplified tumors exhibited genotype selection under RTK-targeted ligand stimulation or pharmacologic inhibition in vitro. Simultaneous inhibition of both EGFR and PDGFR was necessary for abrogation of PI3 kinase pathway activity in the mixed population. DNA sequencing of isolated subpopulations establishes a common clonal origin consistent with late or ongoing divergence of RTK genotype. This phenomenon is especially common among tumors with PDGFRA amplification: overall,43% of PDGFRA-amplified GBM were found to have amplification of EGFR or the hepatocyte growth factor receptor gene (MET) as well.
View Publication
文献
Hu K et al. ( 2012)
Breast cancer research : BCR 14 1 R22
Small interfering RNA library screen identified polo-like kinase-1 (PLK1) as a potential therapeutic target for breast cancer that uniquely eliminates tumor-initiating cells.
INTRODUCTION Triple-negative breast cancer (TNBC) high rate of relapse is thought to be due to the presence of tumor-initiating cells (TICs),molecularly defined as being CD44high/CD24-/low. TICs are resilient to chemotherapy and radiation. However,no currently accepted molecular target exists against TNBC and,moreover,TICs. Therefore,we sought the identification of kinase targets that inhibit TNBC growth and eliminate TICs. METHODS A genome-wide human kinase small interfering RNA (siRNA) library (691 kinases) was screened against the TNBC cell line SUM149 for growth inhibition. Selected siRNAs were then tested on four different breast cancer cell lines to confirm the spectrum of activity. Their effect on the CD44high subpopulation and sorted CD44high/CD24-/low cells of SUM149 also was studied. Further studies were focused on polo-like kinase 1 (PLK1),including its expression in breast cancer cell lines,effect on the CD44high/CD24-/low TIC subpopulation,growth inhibition,mammosphere formation,and apoptosis,as well as the activity of the PLK1 inhibitor,BI 2536. RESULTS Of the 85 kinases identified in the screen,28 of them were further silenced by siRNAs on MDA-MB-231 (TNBC),BT474-M1 (ER+/HER2+,a metastatic variant),and HR5 (ER+/HER2+,a trastuzumab-resistant model) cells and showed a broad spectrum of growth inhibition. Importantly,12 of 28 kinases also reduced the CD44high subpopulation compared with control in SUM149. Further tests of these 12 kinases directly on a sorted CD44high/CD24-/low TIC subpopulation of SUM149 cells confirmed their effect. Blocking PLK1 had the greatest growth inhibition on breast cancer cells and TICs by about 80% to 90% after 72 hours. PLK1 was universally expressed in breast cancer cell lines,representing all of the breast cancer subtypes,and was positively correlated to CD44. The PLK1 inhibitor BI 2536 showed similar effects on growth,mammosphere formation,and apoptosis as did PLK1 siRNAs. Finally,whereas paclitaxel,doxorubicin,and 5-fluorouracil enriched the CD44high/CD24-/low population compared with control in SUM149,subsequent treatment with BI 2536 killed the emergent population,suggesting that it could potentially be used to prevent relapse. CONCLUSION Inhibiting PLK1 with siRNA or BI 2536 blocked growth of TNBCs including the CD44high/CD24-/low TIC subpopulation and mammosphere formation. Thus,PLK1 could be a potential therapeutic target for the treatment of TNBC as well as other subtypes of breast cancer.
View Publication
文献
Barrett LE et al. (JAN 2012)
Cancer cell 21 1 11--24
Self-renewal does not predict tumor growth potential in mouse models of high-grade glioma.
Within high-grade gliomas,the precise identities and functional roles of stem-like cells remain unclear. In the normal neurogenic niche,ID (Inhibitor of DNA-binding) genes maintain self-renewal and multipotency of adult neural stem cells. Using PDGF- and KRAS-driven murine models of gliomagenesis,we show that high Id1 expression (Id1(high)) identifies tumor cells with high self-renewal capacity,while low Id1 expression (Id1(low)) identifies tumor cells with proliferative potential but limited self-renewal capacity. Surprisingly,Id1(low) cells generate tumors more rapidly and with higher penetrance than Id1(high) cells. Further,eliminating tumor cell self-renewal through deletion of Id1 has modest effects on animal survival,while knockdown of Olig2 within Id1(low) cells has a significant survival benefit,underscoring the importance of non-self-renewing lineages in disease progression.
View Publication
文献
Kumar A et al. (JAN 2012)
Breast cancer research : BCR 14 1 R4
Evidence that GTP-binding domain but not catalytic domain of transglutaminase 2 is essential for epithelial-to-mesenchymal transition in mammary epithelial cells.
INTRODUCTION: The expression of proinflammatory protein tissue transglutaminase 2 (TG2) is frequently upregulated in multiple cancer cell types. However,the exact role of TG2 in cancer cells is not well-understood. We recently initiated studies to determine the significance of TG2 in cancer cells and observed that sustained expression of TG2 resulted in epithelial-to-mesenchymal transition (EMT) and promoted cancer stem cell (CSC) traits in mammary epithelial cells. These results suggested that TG2 could serve as a promising therapeutic target for overcoming chemoresistance and inhibiting metastatic spread of cancer cells. METHODS: Using various mutant constructs,we analyzed the activity of TG2 that is essential for promoting the EMT-CSC phenotype. RESULTS: Our results suggest that catalytically inactive TG2 (TG2-C277S) is as effective as wild-type TG2 (TG2-WT) in inducing the EMT-CSC in mammary epithelial cells. In contrast,overexpression of a GTP-binding-deficient mutant (TG2-R580A) was completely incompetent in this regard. Moreover,TG2-dependent activation of the proinflammatory transcription factor NF-κB is deemed essential for promoting the EMT-CSC phenotype in mammary epithelial cells. CONCLUSIONS: Our results suggest that the transamidation activity of TG2 is not essential for promoting its oncogenic functions and provide a strong rationale for developing small-molecule inhibitors to block GTP-binding pockets of TG2. Such inhibitors may have great potential for inhibiting the TG2-regulated pathways,reversing drug resistance and inhibiting the metastasis of cancer cells.
View Publication
文献
Liu C et al. (MAY 2012)
Molecular biology reports 39 5 5875--81
Co-expression of Oct-4 and Nestin in human breast cancers.
The aim is to investigate the clinical implications of the Oct-4 and Nestin protein in human breast cancers. A total of 346 cases including 26 fresh and 320 paraffin-embedded tumor tissues were selected for characterizing the frequency of CD44(+)CD24(-) tumor cells by flow cytometry and the differential expression of the stem cell-related genes between CD44(+)CD24(-) and non-CD44(+)CD24(-) tumor cells was analyzed by PCR Array and immunofluorescence. In comparison with the non-CD44(+)CD24(-) tumor cells,the CD44(+)CD24(-),particularly for those with high percentage of Oct-4(+) and Nestin(+),tumor cells had higher tumorigenicity by forming mammospheres in vitro. More importantly,42 (13.125%) out of 320 tumor tissues were positive for Oct-4 and Nestin staining. Universal analysis and multivariate analysis revealed that the expression of Oct-4 and Nestin was associated significantly with younger age,pathogenic degrees,lymph node metastasis and triple-negative breast cancer independently (P textless 0.05) as well as shorter survival (P = 0.001). Oct-4 and Nestin were important regulators of the development of breast cancer,and Oct-4 and Nestin may be used as predictors for the prognosis of breast cancers.
View Publication
文献
Kanai R et al. (JAN 2012)
Journal of the National Cancer Institute 104 1 42--55
Oncolytic virus-mediated manipulation of DNA damage responses: synergy with chemotherapy in killing glioblastoma stem cells.
BACKGROUND: Although both the alkylating agent temozolomide (TMZ) and oncolytic viruses hold promise for treating glioblastoma,which remains uniformly lethal,the effectiveness of combining the two treatments and the mechanism of their interaction on cancer stem cells are unknown. METHODS: We investigated the efficacy of combining TMZ and the oncolytic herpes simplex virus (oHSV) G47Δ in killing glioblastoma stem cells (GSCs),using Chou-Talalay combination index analysis,immunocytochemistry and fluorescence microscopy,and neutral comet assay. The role of treatment-induced DNA double-strand breaks,activation of DNA damage responses,and virus replication in the cytotoxic interaction between G47Δ and TMZ was examined with a panel of pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of DNA repair pathways. Comparisons of cell survival and virus replication were performed using a two-sided t test (unpaired). The survival of athymic mice (n = 6-8 mice per group) bearing GSC-derived glioblastoma tumors treated with the combination of G47Δ and TMZ was analyzed by the Kaplan-Meier method and evaluated with a two-sided log-rank test. RESULTS: The combination of G47Δ and TMZ acted synergistically in killing GSCs but not neurons,with associated robust induction of DNA damage. Pharmacological and shRNA-mediated knockdown studies suggested that activated ataxia telangiectasia mutated (ATM) is a crucial mediator of synergy. Activated ATM relocalized to HSV DNA replication compartments where it likely enhanced oHSV replication and could not participate in repairing TMZ-induced DNA damage. Sensitivity to TMZ and synergy with G47Δ decreased with O(6)-methylguanine-DNA-methyltransferase (MGMT) expression and MSH6 knockdown. Combined G47Δ and TMZ treatment extended survival of mice bearing GSC-derived intracranial tumors,achieving long-term remission in four of eight mice (median survival = 228 days; G47Δ alone vs G47Δ + TMZ,hazard ratio of survival = 7.1,95% confidence interval = 1.9 to 26.1,P = .003) at TMZ doses attainable in patients. CONCLUSIONS: The combination of G47Δ and TMZ acts synergistically in killing GSCs through oHSV-mediated manipulation of DNA damage responses. This strategy is highly efficacious in representative preclinical models and warrants clinical translation.
View Publication
文献
Jing J et al. ( 2012)
Molecular cancer therapeutics 11 3 720--729
Comprehensive predictive biomarker analysis for MEK inhibitor GSK1120212.
The MEK1 and MEK2 inhibitor GSK1120212 is currently in phase II/III clinical development. To identify predictive biomarkers,sensitivity to GSK1120212 was profiled for 218 solid tumor cell lines and 81 hematologic malignancy cell lines. For solid tumors,RAF/RAS mutation was a strong predictor of sensitivity. Among RAF/RAS mutant lines,co-occurring PIK3CA/PTEN mutations conferred a cytostatic response instead of a cytotoxic response for colon cancer cells that have the biggest representation of the comutations. Among KRAS mutant cell lines,transcriptomics analysis showed that cell lines with an expression pattern suggestive of epithelial-to-mesenchymal transition were less sensitive to GSK1120212. In addition,a proportion of cell lines from certain tissue types not known to carry frequent RAF/RAS mutations also seemed to be sensitive to GSK1120212. Among these were breast cancer cell lines,with triple negative breast cancer cell lines being more sensitive than cell lines from other breast cancer subtypes. We identified a single gene DUSP6,whose expression was associated with sensitivity to GSK1120212 and lack of expression associated with resistance irrelevant of RAF/RAS status. Among hematologic cell lines,acute myeloid leukemia and chronic myeloid leukemia cell lines were particularly sensitive. Overall,this comprehensive predictive biomarker analysis identified additional efficacy biomarkers for GSK1120212 in RAF/RAS mutant solid tumors and expanded the indication for GSK1120212 to patients who could benefit from this therapy despite the RAF/RAS wild-type status of their tumors.
View Publication