Zhou L et al. (AUG 2010)
Breast cancer research and treatment 122 3 795--801
The prognostic role of cancer stem cells in breast cancer: a meta-analysis of published literatures.
CD44+/CD24-/low tumor cells or aldehyde dehydrogenase 1 (ALDH1) positive tumor cells are considered cancer stem cells (CSCs) that possess the properties of self-renewal and tumorigenicity. However,their clinical value and significance in breast cancer remain controversial. A meta-analysis based on published studies was performed with the aim of obtaining an accurate evaluation of the association between the presence of CSCs in clinical samples and clinical outcome. A total of 12 eligible studies with 898 cases and 1,853 controls were included. CSC positive breast cancers,in particular those positive for ALDH1,were significantly associated with high histological grade,estrogen receptor (ER) negativity,progesterone receptor (PR) negativity,and human epidermal growth factor receptor type 2 (HER2) positivity. However,the presence of cancer stem cells was not associated with tumor size or nodal status. ALDH1 positive (RR = 2.83,95% CI: 2.16-3.67,P textless 0.001) and CD44+/CD24-/low tumor cells (RR = 2.32,95% CI: 1.51-3.60,P textless 0.001) were significantly associated with poor overall survival (OS). The stem cell markers are prognostic factors in breast cancer. Larger clinical studies are required to further evaluate the role of these markers in clinical practice.
View Publication
Reference
Brennan SK et al. (NOV 2010)
Blood 116 20 4185--91
Patients with mantle cell lymphoma (MCL) typically respond to initial treatment but subsequently relapse. This pattern suggests that a population of MCL cells is both drug resistant and capable of clonogenic growth. The intracellular enzyme retinaldehyde dehydrogenase (ALDH) provides resistance to several toxic agents. ALDH can also identify stem cells in normal adult tissues and tumorigenic cancer stem cells in several human malignancies. We studied ALDH expression in MCL and found small populations of ALDH(+) cells that were highly clonogenic. Moreover,ALDH(+) MCL cells were relatively quiescent and resistant to a wide range of agents. Normal B cells can be activated by specific unmethylated cytosine-phosphate-guanosine (CpG) DNA motifs through toll-like receptor 9,and we found that the synthetic CpG oligonucleotide 2006 (CpG) reduced the frequency of quiescent ALDH(+) MCL cells,induced terminal plasma cell differentiation,and limited tumor formation in vitro and in vivo. Treatment with CpG also significantly enhanced the activity of the proteasome inhibitor bortezomib that was associated with induction of the unfolded protein response. Our data suggest that CpG may target clonogenic and resistant ALDH(+) cells as well as improve the activity of proteasome inhibitors in MCL.
View Publication
Loss of tumor-initiating cell activity in cyclophosphamide-treated breast xenografts.
Cancer stem cells (CSCs) are a subpopulation of tumor cells with preferential tumor-initiating capacity and have been purported to be resistant to chemotherapy. It has been shown that breast CSC are,on average,enriched in patient tumors after combination neoadjuvant chemotherapy including docetaxel,doxorubicin,and cyclophosphamide (CPA). Here,we investigate the resistance of breast CSC to CPA alone in a xenograft model. CPA treatment led to a 48% reduction in tumor volume during a 2-week period. Cells bearing the CD44(+) CD24(-) phenotype were reduced by 90% (2.5% to 0.24%) in CPA-treated tumors,whereas cells with aldehyde dehydrogenase activity were reduced by 64% (4.7% to 1.7%). A subsequent functional analysis showed that CPA-treated tumors were impaired in their ability to form tumors,indicating loss of functional tumor-initiating activity. These results are consistent with a CSC phenotype that is sensitive to CPA and indicate that some patient CSC may not display the expected resistance to therapy. Deciphering the mechanism for this difference may lead to therapies to counteract resistance.
View Publication
Reference
Agerstam H et al. (SEP 2010)
Blood 116 12 2103--11
Modeling the human 8p11-myeloproliferative syndrome in immunodeficient mice.
The 8p11 myeloproliferative syndrome (EMS),also referred to as stem cell leukemia/lymphoma,is a chronic myeloproliferative disorder that rapidly progresses into acute leukemia. Molecularly,EMS is characterized by fusion of various partner genes to the FGFR1 gene,resulting in constitutive activation of the tyrosine kinases in FGFR1. To date,no previous study has addressed the functional consequences of ectopic FGFR1 expression in the potentially most relevant cellular context,that of normal primary human hematopoietic cells. Herein,we report that expression of ZMYM2/FGFR1 (previously known as ZNF198/FGFR1) or BCR/FGFR1 in normal human CD34(+) cells from umbilical-cord blood leads to increased cellular proliferation and differentiation toward the erythroid lineage in vitro. In immunodeficient mice,expression of ZMYM2/FGFR1 or BCR/FGFR1 in human cells induces several features of human EMS,including expansion of several myeloid cell lineages and accumulation of blasts in bone marrow. Moreover,bone marrow fibrosis together with increased extramedullary hematopoiesis is observed. This study suggests that FGFR1 fusion oncogenes,by themselves,are capable of initiating an EMS-like disorder,and provides the first humanized model of a myeloproliferative disorder transforming into acute leukemia in mice. The established in vivo EMS model should provide a valuable tool for future studies of this disorder.
View Publication
Reference
Pé et al. (OCT 2010)
Journal of medical genetics 47 10 686--91
Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia.
BACKGROUND: CBL missense mutations have recently been associated with juvenile myelomonocytic leukaemia (JMML),an aggressive myeloproliferative and myelodysplastic neoplasm of early childhood characterised by excessive macrophage/monocyte proliferation. CBL,an E3 ubiquitin ligase and a multi-adaptor protein,controls proliferative signalling networks by downregulating the growth factor receptor signalling cascades in various cell types. METHODS AND RESULTS: CBL mutations were screened in 65 patients with JMML. A homozygous mutation of CBL was found in leukaemic cells of 4/65 (6%) patients. In all cases,copy neutral loss of heterozygosity of the 11q23 chromosomal region,encompassing the CBL locus,was demonstrated. Three of these four patients displayed additional features suggestive of an underlying developmental condition. A heterozygous germline CBL p.Y371H substitution was found in each of them and was inherited from the father in one patient. The germline mutation represents the first hit,with somatic loss of heterozygosity being the second hit positively selected in JMML cells. The three patients display a variable combination of dysmorphic features,hyperpigmented skin lesions and microcephaly that enable a 'CBL syndrome' to be tentatively delineated. Learning difficulties and postnatal growth retardation may be part of the phenotype. CONCLUSION: A report of germline mutations of CBL in three patients with JMML is presented here,confirming the existence of an unreported inheritable condition associated with a predisposition to JMML.
View Publication
Reference
Obermair F-J et al. (SEP 2010)
Stem cell research 5 2 131--43
A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation.
Adult neural stem and progenitor cells (NSPCs) are usually defined retrospectively by their ability to proliferate in vivo (bromodeoxyuridine uptake) or to form neurospheres and to differentiate into neurons,astrocytes and oligodendrocytes in vitro. Additional strategies to identify and to isolate NSPCs are of great importance for the investigation of cell differentiation and fate specification. Using the cell surface molecules Prominin-1 and Lewis X and a metabolic marker,the aldehyde dehydrogenase activity,we isolated and characterized five main populations of NSPCs in the neurogenic subventricular zone (SVZ) and the non-neurogenic spinal cord (SC). We used clonal analysis to assess neurosphere formation and multipotency,BrdU retention to investigate in vivo proliferation activity and quantified the expression of NSPC associated genes. Surprisingly,we found many similarities in NSPC subpopulations derived from the SVZ and SC suggesting that subtypes with similar intrinsic potential exist in both regions. The marker defined classification of NSPCs will help to distinguish subpopulations of NSPCs and allows their prospective isolation using fluorescence activated cell sorting.
View Publication
Reference
Rausch V et al. (JUN 2010)
Cancer research 70 12 5004--13
Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics.
Recent evidence suggests that pancreatic cancer and other solid tumors contain a subset of tumorigenic cells capable of extensive self-renewal that contribute to metastasis and treatment resistance. Sorafenib (SO) is a promising new multikinase inhibitor for treatment of advanced kidney and liver cancers. We report here targeting of pancreatic cancer stem cells (CSC) by SO and the development of a strategy to enhance this effect. Although SO administration diminished clonogenicity,spheroid formation,aldehyde dehydrogenase 1 (ALDH1) activity,growth on immunodeficient mice,proliferation,and angiogenesis and induced apoptosis,we observed SO-induced activation of NF-kappaB associated with survival and regrowth of spheroids. For enhanced elimination of CSC characteristics by SO,we cotreated cells with sulforaphane (SF). This broccoli isothiocyanate was recently described to eliminate pancreatic CSCs by downregulation of NF-kappaB activity without inducing toxic side effects. On combination treatment,SF completely eradicated SO-induced NF-kappaB binding,which was associated with abrogated clonogenicity,spheroid formation,ALDH1 activity,migratory capacity,and induction of apoptosis. In vivo,combination therapy reduced the tumor size in a synergistic manner. This was due to induction of apoptosis,inhibition of proliferation and angiogenesis,and downregulation of SO-induced expression of proteins involved in epithelial-mesenchymal transition. Our data suggest that SF may be suited to increase targeting of CSCs by SO.
View Publication
Reference
Prasmickaite L et al. (JAN 2010)
PloS one 5 5 e10731
Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma.
BACKGROUND: Malignant melanoma is an exceptionally aggressive,drug-resistant and heterogeneous cancer. Recently it has been shown that melanoma cells with high clonogenic and tumourigenic abilities are common,but markers distinguishing such cells from cells lacking these abilities have not been identified. There is therefore no definite evidence that an exclusive cell subpopulation,i.e. cancer stem cells (CSC),exists in malignant melanoma. Rather,it is suggested that multiple cell populations are implicated in initiation and progression of the disease,making it of importance to identify subpopulations with elevated aggressive properties. METHODS AND FINDINGS: In several other cancer forms,Aldehyde Dehydrogenase (ALDH),which plays a role in stem cell biology and resistance,is a valuable functional marker for identification of cells that show enhanced aggressiveness and drug-resistance. Furthermore,the presence of ALDH(+) cells is linked to poor clinical prognosis in these cancers. By analyzing cell cultures,xenografts and patient biopsies,we showed that aggressive melanoma harboured a large,distinguishable ALDH(+) subpopulation. In vivo,ALDH(+) cells gave rise to ALDH(-) cells,while the opposite conversion was rare,indicating a higher abilities of ALDH(+) cells to reestablish tumour heterogeneity with respect to the ALDH phenotype. However,both ALDH(+) and ALDH(-) cells demonstrated similarly high abilities for clone formation in vitro and tumour initiation in vivo. Furthermore,both subpopulations showed similar sensitivity to the anti-melanoma drugs,dacarbazine and lexatumumab. CONCLUSIONS: These findings suggest that ALDH does not distinguish tumour-initiating and/or therapy-resistant cells,implying that the ALDH phenotype is not associated with more-aggressive subpopulations in malignant melanoma,and arguing against ALDH as a universal" marker. Besides�
View Publication
Reference
Liu S and Wicha MS (SEP 2010)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28 25 4006--12
Targeting breast cancer stem cells.
There is increasing evidence that many cancers,including breast cancer,contain populations of cells that display stem-cell properties. These breast cancer stem cells,by virtue of their relative resistance to radiation and cytotoxic chemotherapy,may contribute to treatment resistance and relapse. The elucidation of pathways that regulate these cells has led to the identification of potential therapeutic targets. A number of agents capable of targeting breast cancer stem cells in preclinical models are currently entering clinical trials. Assessment of the efficacy of the agents will require development of innovative clinical trial designs with appropriate biologic and clinical end points. The effective targeting of breast cancer stem cells has the potential to significantly improve outcome for women with both early-stage and advanced breast cancer.
View Publication
Reference
Zheng H et al. (MAY 2010)
Cancer cell 17 5 497--509
PLAGL2 regulates Wnt signaling to impede differentiation in neural stem cells and gliomas.
A hallmark feature of glioblastoma is its strong self-renewal potential and immature differentiation state,which contributes to its plasticity and therapeutic resistance. Here,integrated genomic and biological analyses identified PLAGL2 as a potent protooncogene targeted for amplification/gain in malignant gliomas. Enhanced PLAGL2 expression strongly suppresses neural stem cell (NSC) and glioma-initiating cell differentiation while promoting their self-renewal capacity upon differentiation induction. Transcriptome analysis revealed that these differentiation-suppressive activities are attributable in part to PLAGL2 modulation of Wnt/beta-catenin signaling. Inhibition of Wnt signaling partially restores PLAGL2-expressing NSC differentiation capacity. The identification of PLAGL2 as a glioma oncogene highlights the importance of a growing class of cancer genes functioning to impart stem cell-like characteristics in malignant cells.
View Publication
Reference
Benson DM et al. (SEP 2010)
Blood 116 13 2286--94
The PD-1/PD-L1 axis modulates the natural killer cell versus multiple myeloma effect: a therapeutic target for CT-011, a novel monoclonal anti-PD-1 antibody.
T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg,PD-L1) on tumor cells; however,little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM),an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011,a novel anti-PD-1 antibody,enhances human NK-cell function against autologous,primary MM cells,seemingly through effects on NK-cell trafficking,immune complex formation with MM cells,and cytotoxicity specifically toward PD-L1(+) MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.
View Publication
Reference
O'Brien C et al. ( 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 14 3670--3683
Predictive biomarkers of sensitivity to the phosphatidylinositol 3' kinase inhibitor GDC-0941 in breast cancer preclinical models.
PURPOSE: The class I phosphatidylinositol 3' kinase (PI3K) plays a major role in proliferation and survival in a wide variety of human cancers. A key factor in successful development of drugs targeting this pathway is likely to be the identification of responsive patient populations with predictive diagnostic biomarkers. This study sought to identify candidate biomarkers of response to the selective PI3K inhibitor GDC-0941. EXPERIMENTAL DESIGN: We used a large panel of breast cancer cell lines and in vivo xenograft models to identify candidate predictive biomarkers for a selective inhibitor of class I PI3K that is currently in clinical development. The approach involved pharmacogenomic profiling as well as analysis of gene expression data sets from cells profiled at baseline or after GDC-0941 treatment. RESULTS: We found that models harboring mutations in PIK3CA,amplification of human epidermal growth factor receptor 2,or dual alterations in two pathway components were exquisitely sensitive to the antitumor effects of GDC-0941. We found that several models that do not harbor these alterations also showed sensitivity,suggesting a need for additional diagnostic markers. Gene expression studies identified a collection of genes whose expression was associated with in vitro sensitivity to GDC-0941,and expression of a subset of these genes was found to be intimately linked to signaling through the pathway. CONCLUSION: Pathway focused biomarkers and the gene expression signature described in this study may have utility in the identification of patients likely to benefit from therapy with a selective PI3K inhibitor.
View Publication