Sikandar SS et al. (FEB 2010)
Cancer research 70 4 1469--78
NOTCH signaling is required for formation and self-renewal of tumor-initiating cells and for repression of secretory cell differentiation in colon cancer.
NOTCH signaling is critical for specifying the intestinal epithelial cell lineage and for initiating colorectal adenomas and colorectal cancers (CRC). Based on evidence that NOTCH is important for the maintenance and self-renewal of cancer-initiating cells in other malignancies,we studied the role of NOTCH signaling in colon cancer-initiating cells (CCIC). Tumors formed by CCICs maintain many properties of the primary CRCs from which they were derived,such as glandular organization,cell polarity,gap junctions,and expression of characteristic CRC molecular markers. Furthermore,CCICs have the property of self-renewal. In this study,we show that NOTCH signaling is 10- to 30-fold higher in CCIC compared with widely used colon cancer cell lines. Using small-molecule inhibition and short hairpin RNA knockdown,we show that NOTCH prevents CCIC apoptosis through repression of cell cycle kinase inhibitor p27 and transcription factor ATOH1. NOTCH is also critical to intrinsic maintenance of CCIC self-renewal and the repression of secretory cell lineage differentiation genes such as MUC2. Our findings describe a novel human cell system to study NOTCH signaling in CRC tumor initiation and suggest that inhibition of NOTCH signaling may improve CRC chemoprevention and chemotherapy.
View Publication
Reference
Su Y et al. (FEB 2010)
Cancer epidemiology,biomarkers & prevention : a publication of the American Association for Cancer Research,cosponsored by the American Society of Preventive Oncology 19 2 327--37
Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer.
Aldehyde dehydrogenase 1 A1 (ALDH1A1) has recently been suggested as a marker for cancer stem or stem-like cancer cells of some human malignancies. The purpose of this study was to investigate the stem cell-related function and clinical significance of the ALDH1A1 in bladder urothelial cell carcinoma. Aldefluor assay was used to isolate ALDH1A1+ cells from bladder cancer cells. Stem cell characteristics of the ALDH1A1+ cells were then investigated by in vitro and in vivo approaches. Immunohistochemistry was done for evaluating ALDH1A1 expression on 22 normal bladder tissues and 216 bladder tumor specimens of different stage and grade. The ALDH1A1+ cancer cells displayed higher in vitro tumorigenicity compared with isogenic ALDH1A1- cells. The ALDH1A1+ cancer cells could generate xenograft tumors that resembled the histopathologic characteristics and heterogeneity of the parental cells. High ALDH1A1 expression was found in 26% (56 of 216) of human bladder tumor specimens and significantly related to advanced pathologic stage,high histologic grade,recurrence and progression,and metastasis of bladder urothelial cell carcinomas (all P textless 0.05). Furthermore,ALDH1A1 expression was inversely associated with cancer-specific and overall survivals of the patients (P = 0.027 and 0.030,respectively). Therefore,ALDH1A1+ cell population could be enriched in tumor-initiating cells. ALDH1A1 may serve as a useful marker for monitoring the progression of bladder tumor and identifying bladder cancer patients with poor prognosis who might benefit from adjuvant and effective treatments.
View Publication
Reference
Naka K et al. (FEB 2010)
Nature 463 7281 676--80
TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia.
Chronic myeloid leukaemia (CML) is caused by a defined genetic abnormality that generates BCR-ABL,a constitutively active tyrosine kinase. It is widely believed that BCR-ABL activates Akt signalling that suppresses the forkhead O transcription factors (FOXO),supporting the proliferation or inhibiting the apoptosis of CML cells. Although the use of the tyrosine kinase inhibitor imatinib is a breakthrough for CML therapy,imatinib does not deplete the leukaemia-initiating cells (LICs) that drive the recurrence of CML. Here,using a syngeneic transplantation system and a CML-like myeloproliferative disease mouse model,we show that Foxo3a has an essential role in the maintenance of CML LICs. We find that cells with nuclear localization of Foxo3a and decreased Akt phosphorylation are enriched in the LIC population. Serial transplantation of LICs generated from Foxo3a(+/+) and Foxo3a(-/-) mice shows that the ability of LICs to cause disease is significantly decreased by Foxo3a deficiency. Furthermore,we find that TGF-beta is a critical regulator of Akt activation in LICs and controls Foxo3a localization. A combination of TGF-beta inhibition,Foxo3a deficiency and imatinib treatment led to efficient depletion of CML in vivo. Furthermore,the treatment of human CML LICs with a TGF-beta inhibitor impaired their colony-forming ability in vitro. Our results demonstrate a critical role for the TGF-beta-FOXO pathway in the maintenance of LICs,and strengthen our understanding of the mechanisms that specifically maintain CML LICs in vivo.
View Publication
Reference
Jeselsohn R et al. (JAN 2010)
Cancer cell 17 1 65--76
Cyclin D1 kinase activity is required for the self-renewal of mammary stem and progenitor cells that are targets of MMTV-ErbB2 tumorigenesis.
Transplantation studies have demonstrated the existence of mammary progenitor cells with the ability to self-renew and regenerate a functional mammary gland. Although these progenitors are the likely targets for oncogenic transformation,correlating progenitor populations with certain oncogenic stimuli has been difficult. Cyclin D1 is required for lobuloalveolar development during pregnancy and lactation as well as MMTV-ErbB2- but not MMTV-Wnt1-mediated tumorigenesis. Using a kinase-deficient cyclin D1 mouse,we identified two functional mammary progenitor cell populations,one of which is the target of MMTV-ErbB2. Moreover,cyclin D1 activity is required for the self-renewal and differentiation of mammary progenitors because its abrogation leads to a failure to maintain the mammary epithelial regenerative potential and also results in defects in luminal lineage differentiation.
View Publication
Reference
Swift S et al. (MAY 2010)
Blood 115 21 4254--63
Absence of functional EpoR expression in human tumor cell lines.
Certain oncology trials showed worse clinical outcomes in the erythropoiesis-stimulating agent (ESA) arm. A potential explanation was that ESA-activated erythropoietin (Epo) receptors (EpoRs) promoted tumor cell growth. Although there were supportive data from preclinical studies,those findings often used invalidated reagents and methodologies and were in conflict with other studies. Here,we further investigate the expression and function of EpoR in tumor cell lines. EpoR mRNA levels in 209 human cell lines representing 16 tumor types were low compared with ESA-responsive positive controls. EpoR protein production was evaluated in a subset of 66 cell lines using a novel anti-EpoR antibody. EpoR(+) control cells had an estimated 10 000 to 100 000 EpoR dimers/cell. In contrast,54 of 61 lines had EpoR protein levels lower than 100 dimers/cell. Cell lines with the highest EpoR protein levels (400-3200 dimers/cell) were studied further,and,although one line,NCI-H661,bound detectable levels of [(125)I]-recombinant human Epo (rHuEpo),none showed evidence of ESA-induced EpoR activation. There was no increased phosphorylation of STAT5,AKT,ERK,or S6RP with rHuEpo. In addition,EpoR knockdown with siRNAs did not affect viability in 2 cell lines previously reported to express functional EpoR (A2780 and SK-OV-3). These results conflict with the hypothesis that EpoR is functionally expressed in tumors.
View Publication
Reference
Park SY et al. (FEB 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 3 876--87
Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer.
PURPOSE: To evaluate the expression of stem cell-related markers at the cellular level in human breast tumors of different subtypes and histologic stage. EXPERIMENTAL DESIGN: We performed immunohistochemical analyses of 12 proteins [CD44,CD24,ALDH1,vimentin,osteonectin,EPCR,caveolin 1,connexin 43,cytokeratin 18 (CK18),MUC1,claudin 7,and GATA3] selected based on their differential expression in breast cancer cells with more differentiated and stem cell-like characteristics in 47 cases of invasive ductal carcinoma (IDC) only,135 cases of IDC with ductal carcinoma in situ (DCIS),35 cases of DCIS with microinvasion,and 58 cases of pure DCIS. We also analyzed 73 IDCs with adjacent DCIS to determine the differences in the expression of markers by histology within individual tumors. CD44+/CD24- and CD24-/CD24+ cells were detected using double immunohistochemistry. RESULTS: CD44 and EPCR expression was different among the four histologic groups and was lower in invasive compared with in situ tumors,especially in luminal A subtype. The expression of vimentin,osteonectin,connexin 43,ALDH1,CK18,GATA3,and MUC1 differed by tumor subtype in some histologic groups. ALDH1-positive cells were more frequent in basal-like and HER2+ than in luminal tumors. CD44+/CD24- cells were detected in 69% of all tumors with 100% of the basal-like and 52% of HER2+ tumors having some of these cells. CONCLUSIONS: Our findings suggest that in breast cancer,the frequency of tumor cells positive for stem cell-like and more differentiated cell markers varies according to tumor subtype and histologic stage.
View Publication
Reference
Puissant A et al. (FEB 2010)
Cancer research 70 3 1042--52
Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation.
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress,cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62),but its role in the regulation of autophagy is controversial. Here,we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK,thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly,p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV,and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.
View Publication
Reference
Sharma S et al. (MAR 2010)
Cytometry. Part B,Clinical cytometry 78 2 123--9
Electronic volume, aldehyde dehydrogenase, and stem cell marker expression in cells from human peripheral blood apheresis samples.
BACKGROUND: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples. METHODS: HPC-A samples from 44 patients were incubated with Aldefluor with or without the presence of aldehyde dehydrogenase inhibitor DEAB. Cells with high aldehyde dehydrogenase expression (ALDH1(bright)) were analyzed for stem/progenitor markers CD34,CD90,CD117,and CD133. Electronic volume measured by Coulter principal in a Quanta flow analyzer was correlated with ALDH1 and marker expression. RESULTS: In ALDH1(bright)/SSC(low) cells,0.13% of the cells had CD34(+) expression and three distinct populations were seen. Expression of CD90 was dim and the frequency of ALDH1(bright)/SSC(low)/CD90(dim) cells amongst the nonlineage depleted samples was 0.04%. CD117(dim-bright) expression was seen in 0.17% of the samples. Three distinct populations of cells with CD133 expression were seen in ALDH1(bright)/SSC(low) nonlineage depleted cells with a frequency of 0.28%. The ALDH1(bright)/CD90(dim) cells had the smallest mean electronic volume of 264.9 microm(3) when compared with cells with CD34(bright) expression (270.2 microm(3)) and ALDH1(dim)/CD90(dim) cells (223 microm(3)). CONCLUSIONS: ALDH1(bright)/SSC(low) cells show heterogeneity in expression of the four stem cell markers studied. The CD90 cells in both the ALDH1(bright) and ALDH1(dim) populations had the smallest mean electronic volume when compared with similar cells with CD117 expression.
View Publication
Reference
Song Z et al. (JAN 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 2 587--99
Activities of SYK and PLCgamma2 predict apoptotic response of CLL cells to SRC tyrosine kinase inhibitor dasatinib.
PURPOSE: B-cell receptor signaling plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). However,blocking B-cell receptor signaling with dasatinib,an inhibitor of SRC kinase,produced variable results in preclinical and clinical studies. We aim to define the molecular mechanisms underlying the differential dasatinib sensitivity and to uncover more effective therapeutic targets in CLL. EXPERIMENTAL DESIGN: Fresh CLL B cells were treated with dasatinib,and cell viability was followed. The CLL cases were then divided into good and poor responders. The cellular response was correlated with the activities of B-cell receptor signaling molecules,as well as with molecular and cytogenetic prognostic factors. RESULTS: Among 50 CLL cases,dasatinib treatment reduced cell viability by 2% to 90%,with an average reduction of 47% on day 4 of culture. The drug induced CLL cell death through the intrinsic apoptotic pathway mediated by reactive oxygen species. Unexpectedly,phosphorylation of SRC family kinases was inhibited by dasatinib in good,as well as poor,responders. As opposed to SRC family kinases,activities of two downstream molecules,SYK and phospholipase Cgamma2,correlate well with the apoptotic response of CLL cells to dasatinib. CONCLUSIONS: Thus,SYK inhibition predicts cellular response to dasatinib. SYK,together with phospholipase Cgamma2,may serve as potential biomarkers to predict dasatinib therapeutic response in patients. From the pathogenic perspective,our study suggests the existence of alternative mechanisms or pathways that activate SYK,independent of SRC kinase activities. The study further implicates that SYK might serve as a more effective therapeutic target in CLL treatment.
View Publication
Reference
Jiao X et al. (MAR 2010)
The Journal of biological chemistry 285 11 8218--26
c-Jun induces mammary epithelial cellular invasion and breast cancer stem cell expansion.
The molecular mechanisms governing breast tumor cellular self-renewal contribute to breast cancer progression and therapeutic resistance. The ErbB2 oncogene is overexpressed in approximately 30% of human breast cancers. c-Jun,the first cellular proto-oncogene,is overexpressed in human breast cancer. However,the role of endogenous c-Jun in mammary tumor progression is unknown. Herein,transgenic mice expressing the mammary gland-targeted ErbB2 oncogene were crossed with c-jun(f/f) transgenic mice to determine the role of endogenous c-Jun in mammary tumor invasion and stem cell function. The excision of c-jun by Cre recombinase reduced cellular migration,invasion,and mammosphere formation of ErbB2-induced mammary tumors. Proteomic analysis identified a subset of secreted proteins (stem cell factor (SCF) and CCL5) induced by ErbB2 expression that were dependent upon endogenous c-Jun expression. SCF and CCL5 were identified as transcriptionally induced by c-Jun. CCL5 rescued the c-Jun-deficient breast tumor cellular invasion phenotype. SCF rescued the c-Jun-deficient mammosphere production. Endogenous c-Jun thus contributes to ErbB2-induced mammary tumor cell invasion and self-renewal.
View Publication
Reference
Takemura T et al. (FEB 2010)
The Journal of biological chemistry 285 9 6585--94
Reduction of Raf kinase inhibitor protein expression by Bcr-Abl contributes to chronic myelogenous leukemia proliferation.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl-transformed cells,and Ras activity enhances the oncogenic ability of Bcr-Abl. However,the mechanism by which Bcr-Abl activates the Ras pathway is not completely understood. Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction,resulting in blocking the MAP kinase pathway. In the present study,we found that RKIP was depleted in CML cells. We investigated the interaction between RKIP and Bcr-Abl in CML cell lines and Bcr-Abl(+) progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of RKIP and reduced the pERK1/2 status,resulting in inhibited proliferation of CML cells. Moreover,RKIP up-regulated cell cycle regulator FoxM1 expression,resulting in G(1) arrest via p27(Kip1) and p21(Cip1) accumulation. In colony-forming unit granulocyte,erythroid,macrophage,megakaryocyte,colony-forming unit-granulocyte macrophage,and burst-forming unit erythroid,treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced RKIP and reduced FoxM1 expressions,and inhibited colony formation of Bcr-Abl(+) progenitor cells,whereas depletion of RKIP weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl(+) progenitor cells. Thus,Bcr-Abl represses the expression of RKIP,continuously activates pERK1/2,and suppresses FoxM1 expression,resulting in proliferation of CML cells.
View Publication
Reference
Charafe-Jauffret E et al. (JAN 2010)
Clinical cancer research : an official journal of the American Association for Cancer Research 16 1 45--55
Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer.
PURPOSE: To examine the role of cancer stem cells (CSC) in mediating metastasis in inflammatory breast cancer (IBC) and the association of these cells with patient outcome in this aggressive type of breast cancer. EXPERIMENTAL DESIGN: CSCs were isolated from SUM149 and MARY-X,an IBC cell line and primary xenograft,by virtue of increased aldehyde dehydrogenase (ALDH) activity as assessed by the ALDEFLUOR assay. Invasion and metastasis of CSC populations were assessed by in vitro and mouse xenograft assays. Expression of ALDH1 was determined on a retrospective series of 109 IBC patients and this was correlated with histoclinical data. All statistical tests were two sided. Log-rank tests using Kaplan-Meier analysis were used to determine the correlation of ALDH1 expression with development of metastasis and patient outcome. RESULTS: Both in vitro and xenograft assays showed that invasion and metastasis in IBC are mediated by a cellular component that displays ALDH activity. Furthermore,expression of ALDH1 in IBC was an independent predictive factor for early metastasis and decreased survival in this patient population. CONCLUSIONS: These results suggest that the metastatic,aggressive behavior of IBC may be mediated by a CSC component that displays ALDH enzymatic activity. ALDH1 expression represents the first independent prognostic marker to predict metastasis and poor patient outcome in IBC. The results illustrate how stem cell research can translate into clinical practice in the IBC field.
View Publication