Feldmann G et al. (SEP 2008)
Molecular cancer therapeutics 7 9 2725--35
An orally bioavailable small-molecule inhibitor of Hedgehog signaling inhibits tumor initiation and metastasis in pancreatic cancer.
Recent evidence suggests that blockade of aberrant Hedgehog signaling can be exploited as a therapeutic strategy for pancreatic cancer. Our previous studies using the prototype Hedgehog small-molecule antagonist cyclopamine had shown the striking inhibition of systemic metastases on Hedgehog blockade in spontaneously metastatic orthotopic xenograft models. Cyclopamine is a natural compound with suboptimal pharmacokinetics,which impedes clinical translation. In the present study,a novel,orally bioavailable small-molecule Hedgehog inhibitor,IPI-269609,was tested using in vitro and in vivo model systems. In vitro treatment of pancreatic cancer cell lines with IPI-269609 resembled effects observed using cyclopamine (i.e.,Gli-responsive reporter knockdown,down-regulation of the Hedgehog target genes Gli1 and Ptch,as well as abrogation of cell migration and colony formation in soft agar). Single-agent IPI-269609 profoundly inhibited systemic metastases in orthotopic xenografts established from human pancreatic cancer cell lines,although Hedgehog blockade had minimal effect on primary tumor volume. The only discernible phenotype observed within the treated primary tumor was a significant reduction in the population of aldehyde dehydrogenase-bright cells,which we have previously identified as a clonogenic tumor-initiating population in pancreatic cancer. Selective ex vivo depletion of aldehyde dehydrogenase-bright cells with IPI-269609 was accompanied by significant reduction in tumor engraftment rates in athymic mice. Pharmacologic blockade of aberrant Hedgehog signaling might prove to be an effective therapeutic strategy for inhibition of systemic metastases in pancreatic cancer,likely through targeting subsets of cancer cells with tumor-initiating (cancer stem cell") properties."
View Publication
Reference
Dumont N et al. (APR 2009)
Immunology 126 4 588--95
Increased secretion of hyperimmune antibodies following lipopolysaccharide stimulation of CD40-activated human B cells in vitro.
Human B cells can be cultured ex vivo for a few weeks,following stimulation of the CD40 cell surface molecule in the presence of recombinant cytokines such as interleukin-4 (IL-4). However,attempts to produce polyclonal antigen-specific human antibodies by in vitro culture of human B cells obtained from immunized donors have not been successful. It has been shown in mice that lipopolysaccharide (LPS) is a potent mitogen for B cells and plays an important role in the generation of antigen-specific antibody responses. Although it has long been believed that LPS has no direct effect on human B cells,recent data indicating that IL-4-activated human B cells are induced to express Toll-like receptor-4,the main LPS receptor,prompted us to study the effects of LPS on the proliferation and antibody secretion of human B cells. Our results showed that LPS caused a reduction in the expansion of CD40-activated human B cells,accompanied by an increase in antigen-specific antibody secretion. This result suggested that some,but not all,B cells were able to differentiate into antibody-secreting cells in response to LPS. This increased differentiation could be explained by the observation that LPS-stimulated human B cells were induced to secrete higher amounts of IL-6,a pleiotropic cytokine well-known for its B-cell differentiation activity. In vivo,the effect of LPS on cytokine secretion by B cells may not only enhance B-cell differentiation but also help to sustain a local ongoing immune response to invading Gram-negative bacteria,until all pathogens have been cleared from the organism.
View Publication
Reference
Lin YG et al. ( 2008)
Clinical cancer research : an official journal of the American Association for Cancer Research 14 17 5437--5446
Targeting aurora kinase with MK-0457 inhibits ovarian cancer growth.
PURPOSE: The Aurora kinase family plays pivotal roles in mitotic integrity and cell cycle. We sought to determine the effects of inhibiting Aurora kinase on ovarian cancer growth in an orthotopic mouse model using a small molecule pan-Aurora kinase inhibitor,MK-0457. EXPERIMENTAL DESIGN: We examined cell cycle regulatory effects and ascertained the therapeutic efficacy of Aurora kinase inhibition both alone and combined with docetaxel using both in vitro and in vivo ovarian cancer models. RESULTS: In vitro cytotoxicity assays with HeyA8 and SKOV3ip1 cells revealed textgreater10-fold greater docetaxel cytotoxicity in combination with MK-0457. After in vivo dose kinetics were determined using phospho-histone H3 status,therapy experiments with the chemosensitive HeyA8 and SKOV3ip1 as well as the chemoresistant HeyA8-MDR and A2780-CP20 models showed that Aurora kinase inhibition alone significantly reduced tumor burden compared with controls (P valuestextless0.01). Combination treatment with docetaxel resulted in significantly improved reduction in tumor growth beyond that afforded by docetaxel alone (P textlessor= 0.03). Proliferating cell nuclear antigen immunohistochemistry revealed that MK-0457 alone and in combination with docetaxel significantly reduced cellular proliferation (P valuestextless0.001). Compared with controls,treatment with MK-0457 alone and in combination with docetaxel also significantly increased tumor cell apoptosis by approximately 3-fold (Ptextless0.01). Remarkably,compared with docetaxel monotherapy,MK-0457 combined with docetaxel resulted in significantly increased tumor cell apoptosis. CONCLUSIONS: Aurora kinase inhibition significantly reduces tumor burden and cell proliferation and increases tumor cell apoptosis in this preclinical orthotopic model of ovarian cancer. The role of Aurora kinase inhibition in ovarian cancer merits further investigation in clinical trials.
View Publication
Reference
Folkes AJ et al. ( 2008)
Journal of medicinal chemistry 51 18 5522--5532
The identification of 2-(1H-indazol-4-yl)-6-(4-methanesulfonyl-piperazin-1-ylmethyl)-4-morpholin-4-yl-thieno[3,2-d]pyrimidine (GDC-0941) as a potent, selective, orally bioavailable inhibitor of class I PI3 kinase for the treatment of cancer .
Phosphatidylinositol-3-kinase (PI3K) is an important target in cancer due to the deregulation of the PI3K/ Akt signaling pathway in a wide variety of tumors. A series of thieno[3,2-d]pyrimidine derivatives were prepared and evaluated as inhibitors of PI3 kinase p110alpha. The synthesis,biological activity,and further profiling of these compounds are described. This work resulted in the discovery of 17,GDC-0941,which is a potent,selective,orally bioavailable inhibitor of PI3K and is currently being evaluated in human clinical trials for the treatment of cancer.
View Publication
Reference
Levina V et al. (JAN 2008)
PloS one 3 8 e3077
Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties.
BACKGROUND: Cancer stem cells (CSCs) are thought to be responsible for tumor regeneration after chemotherapy,although direct confirmation of this remains forthcoming. We therefore investigated whether drug treatment could enrich and maintain CSCs and whether the high tumorogenic and metastatic abilities of CSCs were based on their marked ability to produce growth and angiogenic factors and express their cognate receptors to stimulate tumor cell proliferation and stroma formation. METHODOLOGY/FINDINGS: Treatment of lung tumor cells with doxorubicin,cisplatin,or etoposide resulted in the selection of drug surviving cells (DSCs). These cells expressed CD133,CD117,SSEA-3,TRA1-81,Oct-4,and nuclear beta-catenin and lost expression of the differentiation markers cytokeratins 8/18 (CK 8/18). DSCs were able to grow as tumor spheres,maintain self-renewal capacity,and differentiate. Differentiated progenitors lost expression of CD133,gained CK 8/18 and acquired drug sensitivity. In the presence of drugs,differentiation of DSCs was abrogated allowing propagation of cells with CSC-like characteristics. Lung DSCs demonstrated high tumorogenic and metastatic potential following inoculation into SCID mice,which supported their classification as CSCs. Luminex analysis of human and murine cytokines in sonicated lysates of parental- and CSC-derived tumors revealed that CSC-derived tumors contained two- to three-fold higher levels of human angiogenic and growth factors (VEGF,bFGF,IL-6,IL-8,HGF,PDGF-BB,G-CSF,and SCGF-beta). CSCs also showed elevated levels of expression of human VEGFR2,FGFR2,CXCR1,2 and 4 receptors. Moreover,human CSCs growing in SCID mice stimulated murine stroma to produce elevated levels of angiogenic and growth factors. CONCLUSIONS/SIGNIFICANCE: These findings suggest that chemotherapy can lead to propagation of CSCs and prevention of their differentiation. The high tumorigenic and metastatic potentials of CSCs are associated with efficient cytokine network production that may represent a target for increased efficacy of cancer therapy.
View Publication
Reference
Yang L et al. (FEB 2009)
Biotechnology and bioengineering 102 2 521--34
Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells.
The optimization of a purely negative depletion,enrichment process for circulating tumor cells (CTCs) in the peripheral blood of head and neck cancer patients is presented. The enrichment process uses a red cell lysis step followed by immunomagnetic labeling,and subsequent depletion,of CD45 positive cells. A number of relevant variables are quantified,or attempted to be quantified,which control the performance of the enrichment process. Six different immunomagnetic labeling combinations were evaluated as well as the significant difference in performance with respect to the blood source: buffy coats purchased from the Red Cross,fresh,peripheral blood from normal donors,and fresh peripheral blood from human cancer patients. After optimization,the process is able to reduce the number of normal blood cells in a cancer patient's blood from 4.05 x 10(9) to 8.04 x 10(3) cells/mL and still recover,on average,2.32 CTC per mL of blood. For all of the cancer patient blood samples tested in which CTC were detected (20 out of 26 patients) the average recovery of CTCs was 21.7 per mL of blood,with a range of 282 to 0.53 CTC. Since the initial number of CTC in a patient's blood is unknown,and most probably varies from patient to patient,the recovery of the CTC is unknown. However,spiking studies of a cancer cell line into normal blood,and subsequent enrichment using the optimized protocol indicated an average recovery of approximately 83%. Unlike a majority of other published studies,this study focused on quantifying as many factors as possible to facilitate both the optimization of the process as well as provide information for current and future performance comparisons. The authors are not aware any other reported study which has achieved the performance reported here (a 5.66 log(10)) in a purely negative enrichment mode of operation. Such a mode of operation of an enrichment process provides significant flexibility in that it has no bias with respect to what attributes define a CTC; thereby allowing the researcher or clinician to use any maker they choose to define whether the final,enrich product contains CTCs or other cell type relevant to the specific question (i.e.,does the CTC have predominantly epithelial or mesenchymal characteristics?).
View Publication
Reference
Kharas MG et al. (SEP 2008)
The Journal of clinical investigation 118 9 3038--50
Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells.
Some cases of pre-B cell acute lymphoblastic leukemia (pre-B-ALL) are caused by the Philadelphia (Ph) chromosome-encoded BCR-ABL oncogene,and these tend to have a poor prognosis. Inhibitors of the PI3K/AKT pathway reduce BCR-ABL-mediated transformation in vitro; however,the specific PI3K isoforms involved are poorly defined. Using a murine model of Ph+ pre-B-ALL,we found that deletion of both Pik3r1 and Pik3r2,genes encoding class IA PI3K regulatory isoforms,severely impaired transformation. BCR-ABL-dependent pre/pro-B cell lines could be established at low frequency from progenitors that lacked these genes,but the cells were smaller,proliferated more slowly,and failed to cause leukemia in vivo. These cell lines displayed nearly undetectable PI3K signaling function and were resistant to the PI3K inhibitor wortmannin. However,they maintained activation of mammalian target of rapamycin (mTOR) and were more sensitive to rapamycin. Treatment with rapamycin caused feedback activation of AKT in WT cell lines but not PI3K-deficient lines. A dual inhibitor of PI3K and mTOR,PI-103,was more effective than rapamycin at suppressing proliferation of mouse pre-B-ALL and human CD19+CD34+)Ph+ ALL leukemia cells treated with the ABL kinase inhibitor imatinib. Our findings provide mechanistic insights into PI3K dependency in oncogenic networks and provide a rationale for targeting class IA PI3K,alone or together with mTOR,in the treatment of Ph+ ALL.
View Publication
Reference
Hu C et al. ( 2008)
Bioorganic & medicinal chemistry 16 17 7888--7893
The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine.
This study was to evaluate the enhancement value of chloroquine (CQ) in cancer cell killing when used in combination with Akt inhibitors. The results showed that the combination of CQ and Akt inhibitors is much more effective than either one alone. Importantly,the CQ-mediated chemosensitization of cell killing effects by Akt inhibitors is cancer specific. In particular,when combined with 10 microM CQ,1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo[4,5-g]quinoxalin-7-yl)phenyl)methyl)-4-piperidinyl)-2H-benzimidazol-2-one (an Akt1 and 2 inhibitor; compound 8) killed cancer cells 10-120 times more effectively than normal cells. Thus,CQ is a very effective and cancer-specific chemosensitizer when used in combination with Akt inhibitors.
View Publication
Reference
Croker AK et al. (AUG 2009)
Journal of cellular and molecular medicine 13 8B 2236--52
High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability.
Cancer stem cells (CSCs) have recently been identified in leukaemia and solid tumours; however,the role of CSCs in metastasis remains poorly understood. This dearth of knowledge about CSCs and metastasis is due largely to technical challenges associated with the use of primary human cancer cells in pre-clinical models of metastasis. Therefore,the objective of this study was to develop suitable pre-clinical model systems for studying stem-like cells in breast cancer metastasis,and to test the hypothesis that stem-like cells play a key role in metastatic behaviour. We assessed four different human breast cancer cell lines (MDA-MB-435,MDA-MB-231,MDA-MB-468,MCF-7) for expression of prospective CSC markers CD44/CD24 and CD133,and for functional activity of aldehyde dehydrogenase (ALDH),an enzyme involved in stem cell self-protection. We then used fluorescence-activated cell sorting and functional assays to characterize differences in malignant/metastatic behaviour in vitro (proliferation,colony-forming ability,adhesion,migration,invasion) and in vivo (tumorigenicity and metastasis). Sub-populations of cells demonstrating stem-cell-like characteristics (high expression of CSC markers and/or high ALDH) were identified in all cell lines except MCF-7. When isolated and compared to ALDH(low)CD44(low/-) cells,ALDH(hi)CD44(+)CD24(-) (MDA-MB-231) and ALDH(hi)CD44(+)CD133(+) (MDA-MB-468) cells demonstrated increased growth (P textless 0.05),colony formation (P textless 0.05),adhesion (P textless 0.001),migration (P textless 0.001) and invasion (P textless 0.001). Furthermore,following tail vein or mammary fat pad injection of NOD/SCID/IL2gamma receptor null mice,ALDH(hi)CD44(+)CD24(-) and ALDH(hi)CD44(+)CD133(+) cells showed enhanced tumorigenicity and metastasis relative to ALDH(low)CD44(low/-) cells (P textless 0.05). These novel results suggest that stem-like ALDH(hi)CD44(+)CD24(-) and ALDH(hi)CD44(+)CD133(+) cells may be important mediators of breast cancer metastasis.
View Publication
Reference
Ma S et al. (JUL 2008)
Molecular cancer research : MCR 6 7 1146--53
Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations.
Recent efforts in our study of cancer stem cells (CSC) in hepatocellular carcinoma (HCC) have led to the identification of CD133 as a prominent HCC CSC marker. Findings were based on experiments done on cell lines and xenograft tumors where expression of CD133 was detected at levels as high as 65%. Based on the CSC theory,CSCs are believed to represent only a minority number of the tumor mass. This is indicative that our previously characterized CD133(+) HCC CSC population is still heterogeneous,consisting of perhaps subsets of cells with differing tumorigenic potential. We hypothesized that it is possible to further enrich the CSC population by means of additional differentially expressed markers. Using a two-dimensional PAGE approach,we compared protein profiles between CD133(+) and CD133(-) subpopulations isolated from Huh7 and PLC8024 and identified aldehyde dehydrogenase 1A1 as one of the proteins that are preferentially expressed in the CD133(+) subfraction. Analysis of the expression of several different ALDH isoforms and ALDH enzymatic activity in liver cell lines found ALDH to be positively correlated with CD133 expression. Dual-color flow cytometry analysis found the majority of ALDH(+) to be CD133(+),yet not all CD133(+) HCC cells were ALDH(+). Subsequent studies on purified subpopulations found CD133(+)ALDH(+) cells to be significantly more tumorigenic than their CD133(-)ALDH(+) or CD133(-)ALDH(-) counterparts,both in vitro and in vivo. These data,combined with those from our previous work,reveal the existence of a hierarchical organization in HCC bearing tumorigenic potential in the order of CD133(+)ALDH(+) textgreater CD133(+)ALDH(-) textgreater CD133(-)ALDH(-). ALDH,expressed along CD133,can more specifically characterize the tumorigenic liver CSC population.
View Publication
Reference
Raouf A et al. (JUL 2008)
Cell stem cell 3 1 109--18
Transcriptome analysis of the normal human mammary cell commitment and differentiation process.
Mature mammary epithelial cells are generated from undifferentiated precursors through a hierarchical process,but the molecular mechanisms involved,particularly in the human mammary gland,are poorly understood. To address this issue,we isolated highly purified subpopulations of primitive bipotent and committed luminal progenitor cells as well as mature luminal and myoepithelial cells from normal human mammary tissue and compared their transcriptomes obtained using three different methods. Elements unique to each subset of mammary cells were identified,and changes that accompany their differentiation in vivo were shown to be recapitulated in vitro. These include a stage-specific change in NOTCH pathway gene expression during the commitment of bipotent progenitors to the luminal lineage. Functional studies further showed NOTCH3 signaling to be critical for this differentiation event to occur in vitro. Taken together,these findings provide an initial foundation for future delineation of mechanisms that perturb primitive human mammary cell growth and differentiation.
View Publication
Reference
Korkaya H et al. (OCT 2008)
Oncogene 27 47 6120--30
HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion.
The cancer stem cell hypothesis proposes that cancers arise in stem/progenitor cells through disregulation of self-renewal pathways generating tumors,which are driven by a component of 'tumor-initiating cells' retaining stem cell properties. The HER2 gene is amplified in 20-30% of human breast cancers and has been implicated in mammary tumorigenesis as well as in mediating aggressive tumor growth and metastasis. We demonstrate that HER2 overexpression drives mammary carcinogenesis,tumor growth and invasion through its effects on normal and malignant mammary stem cells. HER2 overexpression in normal mammary epithelial cells (NMEC) increases the proportion of stem/progenitor cells as demonstrated by in vitro mammosphere assays and the expression of stem cell marker aldehyde dehydrogenase (ALDH) as well as by generation of hyperplastic lesions in humanized fat pads of NOD (nucleotide-binding oligomerization domain)/SCID (severe combined immunodeficient) mice. Overexpression of HER2 in a series of breast carcinoma cell lines increases the ALDH-expressing 'cancer stem cell' population which displays increased expression of stem cell regulatory genes,increased invasion in vitro and increased tumorigenesis in NOD/SCID mice. The effects of HER2 overexpression on breast cancer stem cells are blocked by trastuzumab in sensitive,but not resistant,cell lines,an effect mediated by the PI3-kinase/Akt pathway. These studies provide support for the cancer stem cell hypothesis by suggesting that the effects of HER2 amplification on carcinogenesis,tumorigenesis and invasion may be due to its effects on normal and malignant mammary stem/progenitor cells. Furthermore,the clinical efficacy of trastuzumab may relate to its ability to target the cancer stem cell population in HER2-amplified tumors.
View Publication