Ginestier C et al. (NOV 2007)
Cell stem cell 1 5 555--67
ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.
Application of stem cell biology to breast cancer research has been limited by the lack of simple methods for identification and isolation of normal and malignant stem cells. Utilizing in vitro and in vivo experimental systems,we show that normal and cancer human mammary epithelial cells with increased aldehyde dehydrogenase activity (ALDH) have stem/progenitor properties. These cells contain the subpopulation of normal breast epithelium with the broadest lineage differentiation potential and greatest growth capacity in a xenotransplant model. In breast carcinomas,high ALDH activity identifies the tumorigenic cell fraction,capable of self-renewal and of generating tumors that recapitulate the heterogeneity of the parental tumor. In a series of 577 breast carcinomas,expression of ALDH1 detected by immunostaining correlated with poor prognosis. These findings offer an important new tool for the study of normal and malignant breast stem cells and facilitate the clinical application of stem cell concepts.
View Publication
Reference
Chua KY et al. (JAN 2008)
Methods in molecular biology (Clifton,N.J.) 423 509--20
Production of monoclonal antibody by DNA immunization with electroporation.
DNA immunization with in vivo electroporation is an efficient alternative protocol for the production of monoclonal antibodies (mAb). Generation of mAb by DNA immunization is a novel approach to circumvent the following technical hurdles associated with problematic antigens: low abundance and protein instability and use of recombinant proteins that lack posttranslational modifications. This chapter describes the use of a DNA-based immunization protocol for the production of mAb against a house dust mite allergen,designated as Blo t 11,which is a paramyosin homologue found in Blomia tropicalis mites. The Blo t 11 cDNA fused at the N terminus to the sequence of a signal peptide was cloned into the pCI mammalian expression vector. The DNA construct was injected intramuscularly with in vivo electroporation into mice,and the specific antibody production in mice was analyzed by enzyme-linked immunosorbent assay (ELISA). Hybridomas were generated by fusing mouse splenocytes with myeloma cells using the ClonaCell-HY Hybridoma Cloning Kit. Six hybridoma clones secreting Blo t 11 mAb were successfully generated,and these mAb are useful reagents for immunoaffinity purification and immunoassays.
View Publication
Reference
Fuertes MB et al. (APR 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 7 4606--14
Intracellular retention of the NKG2D ligand MHC class I chain-related gene A in human melanomas confers immune privilege and prevents NK cell-mediated cytotoxicity.
Most tumors grow in immunocompetent hosts despite expressing NKG2D ligands (NKG2DLs) such as the MHC class I chain-related genes A and B (MICA/B). However,their participation in tumor cell evasion is still not completely understood. Here we demonstrate that several human melanomas (cell lines and freshly isolated metastases) do not express MICA on the cell surface but have intracellular deposits of this NKG2DL. Susceptibility to NK cell-mediated cytotoxicity correlated with the ratio of NKG2DLs to HLA class I molecules but not with the amounts of MICA on the cell surface of tumor cells. Transfection-mediated overexpression of MICA restored cell surface expression and resulted in an increased in vitro cytotoxicity and IFN-gamma secretion by human NK cells. In xenografted nude mice,these melanomas exhibited a delayed growth and extensive in vivo apoptosis. Retardation of tumor growth was due to NK cell-mediated antitumor activity against MICA-transfected tumors,given that this effect was not observed in NK cell-depleted mice. Also,mouse NK cells killed MICA-overexpressing melanomas in vitro. A mechanistic analysis revealed the retention of MICA in the endoplasmic reticulum,an effect that was associated with accumulation of endoH-sensitive (immature) forms of MICA,retrograde transport to the cytoplasm,and degradation by the proteasome. Our study identifies a novel strategy developed by melanoma cells to evade NK cell-mediated immune surveillance based on the intracellular sequestration of immature forms of MICA in the endoplasmic reticulum. Furthermore,this tumor immune escape strategy can be overcome by gene therapy approaches aimed at overexpressing MICA on tumor cells.
View Publication
Reference
Xing S et al. (MAY 2008)
Blood 111 10 5109--17
Transgenic expression of JAK2V617F causes myeloproliferative disorders in mice.
The JAK2(V617F) mutation was found in most patients with myeloproliferative disorders (MPDs),including polycythemia vera,essential thrombocythemia,and primary myelofibrosis. We have generated transgenic mice expressing the mutated enzyme in the hematopoietic system driven by a vav gene promoter. The mice are viable and fertile. One line of the transgenic mice,which expressed a lower level of JAK2(V617F),showed moderate elevations of blood cell counts,whereas another line with a higher level of JAK2(V617F) expression displayed marked increases in blood counts and developed phenotypes that closely resembled human essential thrombocythemia and polycythemia vera. The latter line of mice also developed primary myelofibrosis-like symptoms as they aged. The transgenic mice showed erythroid,megakaryocytic,and granulocytic hyperplasia in the bone marrow and spleen,displayed splenomegaly,and had reduced levels of plasma erythropoietin and thrombopoietin. They possessed an increased number of hematopoietic progenitor cells in peripheral blood,spleen,and bone marrow,and these cells formed autonomous colonies in the absence of growth factors and cytokines. The data show that JAK2(V617F) can cause MPDs in mice. Our study thus provides a mouse model to study the pathologic role of JAK2(V617F) and to develop treatment for MPDs.
View Publication
Reference
Schü et al. (MAY 2008)
Blood 111 9 4532--41
The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate.
Mef2c is a MADS (MCM1-agamous-deficient serum response factor) transcription factor best known for its role in muscle and cardiovascular development. A causal role of up-regulated MEF2C expression in myelomonocytic acute myeloid leukemia (AML) has recently been demonstrated. Due to the pronounced monocytic component observed in Mef2c-induced AML,this study was designed to assess the importance of Mef2c in normal myeloid differentiation. Analysis of bone marrow (BM) cells manipulated to constitutively express Mef2c demonstrated increased monopoiesis at the expense of granulopoiesis,whereas BM isolated from Mef2c(Delta/-) mice showed reduced levels of monocytic differentiation in response to cytokines. Mechanistic studies showed that loss of Mef2c expression correlated with reduced levels of transcripts encoding c-Jun,but not PU.1,C/EBPalpha,or JunB transcription factors. Inhibiting Jun expression by short-interfering RNA impaired Mef2c-mediated inhibition of granulocyte development. Moreover,retroviral expression of c-Jun in BM cells promoted monocytic differentiation. The ability of Mef2c to modulate cell-fate decisions between monocyte and granulocyte differentiation,coupled with its functional sensitivity to extracellular stimuli,demonstrate an important role in immunity--and,consistent with findings of other myeloid transcription factors,a target of oncogenic lesions in AML.
View Publication
Reference
Ortiz-Lazareno PC et al. ( 2008)
Immunology 124 4 534--541
MG132 proteasome inhibitor modulates proinflammatory cytokines production and expression of their receptors in U937 cells: involvement of nuclear factor-kappaB and activator protein-1.
In response to inflammatory stimuli,monocytes/macrophages secrete greater quantities of the proinflammatory cytokines tumour necrosis factor-alpha (TNF-alpha),interleukin-1beta (IL-1beta) and IL-6. The inflammatory process and the innate immune response are related to the activation of several transcription factors,such as nuclear factor kappaB (NF-kappaB) and activator protein 1 (AP-1). The proteasome is a multimeric protease complex,which plays a vital role in several cellular functions,including the regulation of transcription factors like NF-kappaB. In this study,we used the human monocyte cell line U937 stimulated with lipopolysaccharide (LPS) and phorbol 12-myristate 13-acetate (PMA) as a model to investigate the in vitro effects of MG132,a proteasome inhibitor,on the release of TNF-alpha,IL-1beta and IL-6 and on the expression of their membrane and soluble receptors TNF-R1,IL-1R1 and IL-6R. We also analysed the effects of MG132 on the activation of NF-kappaB and AP-1 and on the IkappaB molecule. MG132 significantly inhibited the secretion of those proinflammatory cytokines. MG132 increased the release of the soluble receptors TNF-R1 and IL-1R1 from U937 cells and decreased their cell-surface expression. MG132 also increased IL-6R cell-surface expression and decreased its release. Proteasome inhibition also led to an increase in LPS+PMA-induced AP-1 activation and the attenuation of LPS+PMA-induced IkappaB degradation,resulting in the abolition of NF-kappaB activation. Our experiments strongly suggest that the proteasome is an important factor in the regulation of proinflammatory cytokines and their receptors.
View Publication
Reference
Soto-Cruz I et al. ( 2008)
Cancer Investigation 26 2 136--144
The Tyrphostin B42 Inhibits Cell Proliferation and HER-2 Autophosphorylation in Cervical Carcinoma Cell Lines
The HER family receptors have an important role controlling cell growth and differentiation. Although the activity of the HER-2 receptor is strictly controlled in normal cells,its overexpression plays a pivotal role in transformation and tumorigenesis. Constitutive phosphorylation of HER-2 protein has been implicated in conferring uncontrolled growth to mammary cancer cells,and to a lesser extent,with adenocarcinoma of uterus,cervix,fallopian tube,and endometrium. This study addresses the role of HER-2 in cervical carcinoma. Firstly,we demonstrate the presence of HER-2 protein expression by flow cytometry in two new cervical carcinoma cell lines CALO and INBL. Secondly,we use the specific tyrosine kinase inhibitors,Tyrphostins to examine HER-2 regulation by the crystal violet assay. Thirdly,we use western blot analysis to assess the state of HER-2 phosphorylation. The most efficient agent,Tyrphostin B42,known as an inhibitor of epithelial growth factor receptor,arrested cervical carcinoma cell lines growth in vitro at micromolar concentrations within 72 h of application. Tyrphostin B42 inhibited the HER2 signal-regulated kinase pathway,as observed by the reduction in the phosphorylated forms of HER2. The loss of phosphorylated forms of HER2 at early time points after Tyrphostin B42 application was associated with suppression of cell growth. Thus,the inhibition of the proliferation of our cervical carcinoma cell lines by Tyrphostin B42 is associated with inhibition of HER2 protein kinase signal.
View Publication
Reference
Liu S et al. (FEB 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 5 1680--5
BRCA1 regulates human mammary stem/progenitor cell fate.
Although it is well established that women with germ-line mutations in the BRCA1 gene have a greatly increased lifetime incidence of breast and ovarian cancer,the molecular mechanisms responsible for this tissue-specific carcinogenesis remain undefined. The majority of these breast cancers are of the basal-like phenotype characterized by lack of expression of ER,PR,and ERBB2. Because this phenotype has been proposed to resemble that of normal breast stem cells,we examined the role of BRCA1 in human mammary stem cell fate. Using both in vitro systems and a humanized NOD/SCID mouse model,we demonstrate that BRCA1 expression is required for the differentiation of ER-negative stem/progenitor cells to ER-positive luminal cells. Knockdown of BRCA1 in primary breast epithelial cells leads to an increase in cells displaying the stem/progenitor cell marker ALDH1 and a decrease in cells expressing luminal epithelial markers and estrogen receptor. In breast tissues from women with germ-line BRCA1 mutations,but not normal controls,we detect entire lobules that,although histologically normal,are positive for ALDH1 expression but are negative for the expression of ER. Loss of heterozygosity for BRCA1 was documented in these ALDH1-positive lobules but not in adjacent ALDH1-negative lobules. Taken together,these studies demonstrate that BRCA1 plays a critical role in the differentiation of ER-negative stem/progenitor cells to ER-positive luminal cells. Because BRCA1 also plays a role in DNA repair,our work suggests that loss of BRCA1 may result in the accumulation of genetically unstable breast stem cells,providing prime targets for further carcinogenic events.
View Publication
Reference
Lidonnici MR et al. (MAY 2008)
Blood 111 9 4771--9
Requirement of c-Myb for p210(BCR/ABL)-dependent transformation of hematopoietic progenitors and leukemogenesis.
The c-Myb gene encodes a transcription factor required for proliferation and survival of normal myeloid progenitors and leukemic blast cells. Targeting of c-Myb by antisense oligodeoxynucleotides has suggested that myeloid leukemia blasts (including chronic myelogenous leukemia [CML]-blast crisis cells) rely on c-Myb expression more than normal progenitors,but a genetic approach to assess the requirement of c-Myb by p210(BCR/ABL)-transformed hematopoietic progenitors has not been taken. We show here that loss of a c-Myb allele had modest effects (20%-28% decrease) on colony formation of nontransduced progenitors,while the effect on p210(BCR/ABL)-expressing Lin(-) Sca-1(+) and Lin(-) Sca-1(+)Kit(+) cells was more pronounced (50%-80% decrease). Using a model of CML-blast crisis,mice (n = 14) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/w) marrow cells developed leukemia rapidly and had a median survival of 26 days,while only 67% of mice (n = 12) injected with p210(BCR/ABL)-transduced p53(-/-)c-Myb(w/d) marrow cells died of leukemia with a median survival of 96 days. p210(BCR/ABL)-transduced c-Myb(w/w) and c-Myb(w/d) marrow progenitors expressed similar levels of the c-Myb-regulated genes c-Myc and cyclin B1,while those of Bcl-2 were reduced. However,ectopic Bcl-2 expression did not enhance colony formation of p210(BCR/ABL)-transduced c-Myb(w/d) Lin(-)Sca-1(+)Kit(+) cells. Together,these studies support the requirement of c-Myb for p210(BCR/ABL)-dependent leukemogenesis.
View Publication
Reference
Matsui W et al. (JAN 2008)
Cancer research 68 1 190--7
Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance.
Many agents are active in multiple myeloma,but the majority of patients relapse. This clinical pattern suggests most cancer cells are eliminated,but cells with the clonogenic potential to mediate tumor regrowth are relatively chemoresistant. Our previous data suggested that CD138(+) multiple myeloma plasma cells cannot undergo long-term proliferation but rather arise from clonogenic CD138(neg) B cells. We compared the relative sensitivity of these distinct cell types to clinical antimyeloma agents and found that dexamethasone,lenadilomide,bortezomib,and 4-hydroxycyclophosphamide inhibited CD138(+) multiple myeloma plasma cells but had little effect on CD138(neg) precursors in vitro. We further characterized clonogenic multiple myeloma cells and stained cell lines using the Hoechst side population and Aldefluor assays. Each assay identified CD138(neg) cells suggesting that they possess high drug efflux capacity and intracellular drug detoxification activity. We also found that multiple myeloma cells expressing the memory B-cell markers CD20 and CD27 could give rise to clonogenic multiple myeloma growth in vitro and engraft immunodeficient nonobese diabetes/severe combined immunodeficient mice during both primary and secondary transplantation. Furthermore,both the side population and Aldefluor assays were capable of identifying circulating clonotypic memory B-cell populations within the peripheral blood of multiple myeloma patients. Our results suggest that circulating clonotypic B-cell populations represent multiple myeloma stem cells,and the relative drug resistance of these cells is mediated by processes that protect normal stem cells from toxic injury.
View Publication
Reference
Ibarra I et al. (DEC 2007)
Genes & development 21 24 3238--43
A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells.
microRNA (miRNA) expression profiles are often characteristic of specific cell types. The mouse mammary epithelial cell line,Comma-Dbeta,contains a population of self-renewing progenitor cells that can reconstitute the mammary gland. We purified this population and determined its miRNA signature. Several microRNAs,including miR-205 and miR-22,are highly expressed in mammary progenitor cells,while others,including let-7 and miR-93,are depleted. Let-7 sensors can be used to prospectively enrich self-renewing populations,and enforced let-7 expression induces loss of self-renewing cells from mixed cultures.
View Publication
Reference
McDermott U et al. ( 2007)
Proceedings of the National Academy of Sciences of the United States of America 104 50 19936--19941
Identification of genotype-correlated sensitivity to selective kinase inhibitors by using high-throughput tumor cell line profiling.
Kinase inhibitors constitute an important new class of cancer drugs,whose selective efficacy is largely determined by underlying tumor cell genetics. We established a high-throughput platform to profile 500 cell lines derived from diverse epithelial cancers for sensitivity to 14 kinase inhibitors. Most inhibitors were ineffective against unselected cell lines but exhibited dramatic cell killing of small nonoverlapping subsets. Cells with exquisite sensitivity to EGFR,HER2,MET,or BRAF kinase inhibitors were marked by activating mutations or amplification of the drug target. Although most cell lines recapitulated known tumor-associated genotypes,the screen revealed low-frequency drug-sensitizing genotypes in tumor types not previously associated with drug susceptibility. Furthermore,comparing drugs thought to target the same kinase revealed striking differences,predictive of clinical efficacy. Genetically defined cancer subsets,irrespective of tissue type,predict response to kinase inhibitors,and provide an important preclinical model to guide early clinical applications of novel targeted inhibitors.
View Publication