Liebmann JE et al. ( 1993)
British journal of cancer 68 6 1104--1109
Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines.
The cytotoxicity of paclitaxel against eight human tumour cell lines has been studied with in vitro clonogenic assays. The fraction of surviving cells fell sharply after exposure for 24 h to paclitaxel concentrations ranging from 2 to 20 nM; the paclitaxel IC50 was found to range between 2.5 and 7.5 nM. Increasing the paclitaxel concentration above 50 nM,however,resulted in no additional cytotoxicity after a 24 h drug exposure. Cells incubated in very high concentrations of paclitaxel (10,000 nM) had an increase in survival compared with cells treated with lower concentrations of the drug. Prolonging the time of exposure of cells to paclitaxel from 24 to 72 h increased cytotoxicity from 5 to 200 fold in different cell lines. Exponentially growing cells were more sensitive to paclitaxel than were cells in the plateau phase of growth. Cremophor EL,the diluent in which the clinical preparation of paclitaxel is formulated,antagonised paclitaxel at concentrations of 0.135% (v/v). These data suggest that paclitaxel will be most effective clinically when there is prolonged exposure of tumour to the drug. Further,it appears that modest concentrations (i.e.,50 nM) should be as effective as higher concentrations of paclitaxel. Finally,we have noted that Cremophor EL is a biologically active diluent and,at high concentrations (0.135% v/v),can antagonise paclitaxel cytotoxicity.
View Publication
文献
Schultz RM et al. ( 1995)
Anticancer research 15 4 1135--9
In vitro and in vivo antitumor activity of the phosphatidylinositol-3-kinase inhibitor, wortmannin.
The microbial product wortmannin has previously been shown to be a potent inhibitor of phosphatidylinositol-3-kinase. In view of the potential role of this enzyme in transduction of mitogenic signals,we determined the cytotoxic activity of wortmannin against several human tumor cell lines in vitro. The most sensitive lines included GC3 colon carcinoma,IGROV1 ovarian carcinoma,and CCRF-CEM leukemia (IC-50s ranging from 0.7-2.1 microM). The cytotoxicity of wortmannin was decreased approximately 10-fold by serum-free conditions. Wortmannin was generally less active in low passage human breast cancer cell lines that overexpress either epidermal growth factor receptor or Her2/neu. Wortmannin was also tested for in vivo antitumor activity against seven murine tumor and ten human tumor xenograft models. Activity (textgreater 60% inhibition of tumor growth) was observed in only the C3H mammary carcinoma and the human BxPC-3 pancreatic carcinoma xenograft. In vivo antitumor activity did not correlate with in vitro sensitivity to wortmannin cytotoxicity.
View Publication
文献
Blagosklonny MV et al. ( 1995)
Cancer research 55 20 4623--4626
Taxol induction of p21WAF1 and p53 requires c-raf-1.
Taxol stabilizes microtubules,prevents tubulin depolymerization,and promotes tubulin bundling and is one of the most effective drugs for the treatment of metastatic breast and ovarian cancer. Although its interaction with tubulin has been well characterized,the mechanism by which taxol induces growth arrest and cytotoxicity is not well understood. Herein,we show that taxol induced dose- and time-dependent accumulation of the cyclin inhibitor p21WAF1 in both p53 wild-type and p53-null cells,although the degree of induction was greater in cells expressing wild-type p53. In MCF7 cells,wild-type p53 protein was also induced after taxol treatment,and this induction was mediated primarily by increased protein stability. Taxol induced both p21WAF1 and wild-type p53 optimally in MCF7 cells after 20-24-h exposure with an EC50(3) of 5 nM. In p53-null PC3M cells,p21WAF1 was similarly induced after 24-h exposure to taxol. Coincident with these biochemical effects,taxol altered the electrophoretic mobility of c-raf-1 and stimulated mitogen activated protein kinase. Previous depletion of c-raf-1 inhibited both the p21WAF1- and p53-inducing properties of taxol,as well as the activation of MAP kinase. These data suggest that induction of p21WAF1 by taxol requires c-raf-1 activity,but that it is not strictly dependent on wild-type p53. Furthermore,the ability of taxol to both induce wild-type p53 in MCF7 cells and activate MAP kinase is also dependent on c-raf-1 expression.
View Publication
文献
A. Kuske et al. (DEC 2016)
Scientific reports 6 39736
Improved detection of circulating tumor cells in non-metastatic high-risk prostate cancer patients.
The relevance of blood-based assays to monitor minimal residual disease (MRD) in non-metastatic prostate cancer (PCa) remains unclear. Proving that clinically relevant circulating tumor cells (CTCs) can be detected with available technologies could address this. This study aimed to improve CTC detection in non-metastatic PCa patients by combining three independent CTC assays: the CellSearch system,an in vivo CellCollector and the EPISPOT. Peripheral blood samples from high-risk PCa patients were screened for CTCs before and three months after radical prostatectomy (RP). Combining the results of both time points,CTCs were detected in 37{\%},54.9{\%} and 58.7{\%} of patients using CellSearch,CellCollector and EPISPOT,respectively. The cumulative positivity rate of the three CTC assays was 81.3{\%} (87/107) with 21.5{\%} (23/107) of patients harboring ≥5 CTCs/7.5 ml blood. Matched pair analysis of 30 blood samples taken before and after surgery indicated a significant decrease in CTCs captured by the CellCollector from 66{\%} before RP to 34{\%} after therapy (p = 0.031). CTC detection by EPISPOT before RP significantly correlated with PSA serum values (p {\textless} 0.0001) and clinical tumor stage (p = 0.04),while the other assays showed no significant correlations. In conclusion,CTC-based liquid biopsies have the potential to monitor MRD in patients with non-metastatic prostate cancer.
View Publication
文献
Moore S et al. ( 2017)
Methods in molecular biology (Clifton,N.J.) 1541 127--142
Cytoplasmic Immunoglobulin Light Chain Revelation and Interphase Fluorescence In Situ Hybridization in Myeloma.
The cytogenetic analysis of plasma cell myeloma (PCM) allows stratification of patients so that prognosis may be determined and appropriate therapeutic options can be discussed. Owing to the patchy nature of the disease in the bone marrow (BM),the low proliferative activity of plasma cells and the cryptic nature of some PCM-associated cytogenetic changes,karyotypic analysis in this disease should be augmented with targeted interphase fluorescence in situ hybridization (FISH). Immunofluorescent revelation of cytoplasmic immunoglobulin light chains,together with interphase FISH (cIg-FISH),allows the identification of plasma cells within a sample so that they may be scored preferentially. This is particularly useful in situations where there are only a small percentage of plasma cells in a sample. Where an underlying myeloid disease is suspected the cIg-FISH-negative cells can be scored separately. Two methods are provided in this chapter: the technique for cIg-FISH in fresh PCM BM samples and a procedure for use in fixed cytogenetics preparations.
View Publication
文献
Guryanova OA et al. (NOV 2016)
Nature Medicine
DNMT3A mutations promote anthracycline resistance in acute myeloid leukemia via impaired nucleosome remodeling.
Although the majority of patients with acute myeloid leukemia (AML) initially respond to chemotherapy,many of them subsequently relapse,and the mechanistic basis for AML persistence following chemotherapy has not been determined. Recurrent somatic mutations in DNA methyltransferase 3A (DNMT3A),most frequently at arginine 882 (DNMT3A(R882)),have been observed in AML and in individuals with clonal hematopoiesis in the absence of leukemic transformation. Patients with DNMT3A(R882) AML have an inferior outcome when treated with standard-dose daunorubicin-based induction chemotherapy,suggesting that DNMT3A(R882) cells persist and drive relapse. We found that Dnmt3a mutations induced hematopoietic stem cell expansion,cooperated with mutations in the FMS-like tyrosine kinase 3 gene (Flt3(ITD)) and the nucleophosmin gene (Npm1(c)) to induce AML in vivo,and promoted resistance to anthracycline chemotherapy. In patients with AML,the presence of DNMT3A(R882) mutations predicts minimal residual disease,underscoring their role in AML chemoresistance. DNMT3A(R882) cells showed impaired nucleosome eviction and chromatin remodeling in response to anthracycline treatment,which resulted from attenuated recruitment of histone chaperone SPT-16 following anthracycline exposure. This defect led to an inability to sense and repair DNA torsional stress,which resulted in increased mutagenesis. Our findings identify a crucial role for DNMT3A(R882) mutations in driving AML chemoresistance and highlight the importance of chromatin remodeling in response to cytotoxic chemotherapy.
View Publication
文献
Kanzaki H et al. ( 2016)
Scientific Reports 6 August 32259
A-Disintegrin and Metalloproteinase (ADAM) 17 enzymatically degrades interferon-gamma
Clark PA et al. (JUL 2016)
Molecular pharmaceutics acs.molpharmaceut.6b00441
Analysis of Cancer-targeting Alkylphosphocholine Analog Permeability Characteristics Using a Human Induced Pluripotent Stem Cell Blood-Brain Barrier Model.
Cancer-targeting alkylphosphocholine (APC) analogs are being clinically developed for diagnostic imaging,intraoperative visualization,and therapeutic applications. These APC analogs derived from chemically-synthesized phospholipid ethers were identified and optimized for cancer-targeting specificity using extensive structure-activity studies. While they strongly label human brain cancers associated with disrupted blood-brain barriers (BBB),APC permeability across intact BBB remains unknown. Three of our APC analogs,CLR1404 (PET radiotracer),CLR1501 (green fluorescence),and CLR1502 (near infrared fluorescence),were tested for permeability across a BBB model composed of human induced pluripotent stem cell-derived brain microvascular endothelial cells (iPSC-derived BMECs). This in vitro BBB system has reproducibly consistent high barrier integrity marked by high transendothelial electrical resistance (TEERtextgreater1500 Ω-cm(2)) and functional expression of drug efflux transporters. Our radioiodinated and fluorescent APC analogs demonstrated fairly low permeability across the iPSC-BMEC (35±5.7 (CLR1404),54±3.2 (CLR1501),and 26±4.9 (CLR1502) x10(-5) cm/min) compared with BBB-impermeable sucrose (13±2.5) and BBB-permeable diazepam (170±29). Only our fluorescent APC analogs (CLR1501,CLR1502) underwent BCRP and MRP polarized drug efflux transport in the brain-to-blood direction of the BBB model and this efflux can be specifically blocked with pharmacological inhibition. None of our tested APC analogs appeared to undergo substantial P-gp transport. Limited permeability of our APC analogs across an intact BBB into normal brain likely contributes to the high tumor to background ratios observed in initial human trials. Moreover,addition of fluorescent moieties to APCs resulted in greater BMEC efflux via MRP and BCRP,and may affect fluorescence-guided applications. Overall,the characterization of APC analog permeability across human BBB is significant for advancing future brain tumor-targeted applications of these agents.
View Publication
文献
Li T et al. ( 2016)
Scientific reports 6 27055
Immuno-targeting the multifunctional CD38 using nanobody.
CD38,as a cell surface antigen is highly expressed in several hematologic malignancies including multiple myeloma (MM) and has been proven to be a good target for immunotherapy of the disease. CD38 is also a signaling enzyme responsible for the metabolism of two novel calcium messenger molecules. To be able to target this multifunctional protein,we generated a series of nanobodies against CD38 with high affinities. Crystal structures of the complexes of CD38 with the nanobodies were solved,identifying three separate epitopes on the carboxyl domain. Chromobodies,engineered by tagging the nanobody with fluorescence proteins,provide fast,simple and versatile tools for quantifying CD38 expression. Results confirmed that CD38 was highly expressed in malignant MM cells compared with normal white blood cells. The immunotoxin constructed by splicing the nanobody with a bacterial toxin,PE38 shows highly selective cytotoxicity against patient-derived MM cells as well as the cell lines,with half maximal effective concentration reaching as low as 10(-11) molar. The effectiveness of the immunotoxin can be further increased by stimulating CD38 expression using retinoid acid. These results set the stage for the development of clinical therapeutics as well as diagnostic screening for myeloma.
View Publication
文献
Wang W et al. (MAY 2016)
Cell 165 5 1092--105
Effector T Cells Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer.
Effector T cells and fibroblasts are major components in the tumor microenvironment. The means through which these cellular interactions affect chemoresistance is unclear. Here,we show that fibroblasts diminish nuclear accumulation of platinum in ovarian cancer cells,resulting in resistance to platinum-based chemotherapy. We demonstrate that glutathione and cysteine released by fibroblasts contribute to this resistance. CD8(+) T cells abolish the resistance by altering glutathione and cystine metabolism in fibroblasts. CD8(+) T-cell-derived interferon (IFN)γ controls fibroblast glutathione and cysteine through upregulation of gamma-glutamyltransferases and transcriptional repression of system xc(-) cystine and glutamate antiporter via the JAK/STAT1 pathway. The presence of stromal fibroblasts and CD8(+) T cells is negatively and positively associated with ovarian cancer patient survival,respectively. Thus,our work uncovers a mode of action for effector T cells: they abrogate stromal-mediated chemoresistance. Capitalizing upon the interplay between chemotherapy and immunotherapy holds high potential for cancer treatment.
View Publication
文献
Anjanappa M et al. (APR 2016)
Molecular cancer research : MCR
Distinct Effects of Adipose-derived Stem Cells and Adipocytes on Normal and Cancer Cell Hierarchy.
Adipose-derived stem cells (ASCs) have received considerable attention in oncology because of the known direct link between obesity and cancer as well as the use of ASCs in reconstructive surgery after tumor ablation. Previous studies have documented how cancer cells commandeer ASCs to support their survival by altering extracellular matrix (ECM) composition and stiffness,migration,and metastasis. This study focused on delineating the effects of ASCs and adipocytes on the self-renewal of stem/progenitor cells and hierarchy of breast epithelial cells. The immortalized breast epithelial cell line MCF10A,ductal carcinoma in situ (DCIS) cell lines MCF10DCIS.com and SUM225,and MCF10A overexpressing SRC oncogene were examined using a mammosphere assay and flow cytometry for the effects of ASCs on their self-renewal and stem-luminal progenitor-differentiated cell surface marker profiles. Interestingly,ASCs promoted the self-renewal of all cell types except SUM225. ASC co-culture or treatment with ASC conditioned media (CM) altered the number of CD49fhigh/EpCAMlow basal/stem-like and CD49fmedium/EpCAMmedium luminal progenitor cells. Among multiple factors secreted by ASCs,IFN$$ and HGF displayed unique actions on epithelial cell hierarchy. IFN$$ increased stem/progenitor-like cells while simultaneously reducing the size of mammospheres,whereas HGF increased the size of mammospheres with an accompanying increase in luminal progenitor cells. ASCs expressed higher levels of HGF,whereas adipocytes expressed higher levels of IFN$$. Since luminal progenitor cells are believed to be prone for transformation,IFN$$ and HGF expression status of ASCs may influence susceptibility for developing breast cancer as well as on outcomes of autologous fat transplantation on residual/dormant tumor cells. IMPLICATIONS This study suggests that the ratio of adipose-derived stem cells to adipocytes influences cancer cell hierarchy,which may impact incidence and progression.
View Publication
文献
Vanden Bempt M et al. (MAR 2016)
Leukemia March 8 Epub ahead of print
Generation of the Fip1l1–Pdgfra fusion gene using CRISPR/Cas genome editing