Hü et al. (JAN 2010)
International immunology 22 1 35--44
Intact LFA-1 deactivation promotes T-cell activation and rejection of cardiac allograft.
Leucocyte function-associated antigen-1 (LFA-1) is known to be involved in immune reactions leading to allograft rejection. The role of deactivating LFA-1 in this context has not been investigated yet,although it is accepted that regulating LFA-1 activity is essential for T-cell function. Expressing LFA-1 locked in an active state in mice (LFA-1(d/d)) allowed us to investigate the in vivo function of LFA-1 deactivation for allograft rejection in a model of heterotopic cardiac transplantation. We provide in vivo evidence that regulating LFA-1 activity from an active to an inactive state controls antigen-specific priming and proliferation of T cells in response to allogeneic stimuli. Consequently,defective LFA-1 deactivation significantly prolonged cardiac allograft survival. Furthermore,reduced numbers of alloantigen-specific T cells and non-allo-specific innate immune cells within allografts of LFA-1(d/d) recipients indicate that expression of active LFA-1 impairs inflammatory responses involving all major leucocyte subpopulations. Taken together,our in vivo data suggest that LFA-1 deactivation is important for the formation of inflammatory lesions and rejection of cardiac allografts. Thus,the dynamic regulation of LFA-1 activity,rather than the mere presence of LFA-1,appears to contribute to the control of immune reactions inducing allogeneic transplant rejection.
View Publication
Reference
Crabé et al. (DEC 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 12 7692--702
The IL-27 p28 subunit binds cytokine-like factor 1 to form a cytokine regulating NK and T cell activities requiring IL-6R for signaling.
IL-27 is formed by the association of a cytokine subunit,p28,with the soluble cytokine receptor EBV-induced gene 3 (EBI3). The IL-27R comprises gp130 and WSX-1. The marked difference between EBI3(-/-) and WSX-1(-/-) mice suggests that p28 has functions independent of EBI3. We have identified an alternative secreted complex formed by p28 and the soluble cytokine receptor cytokine-like factor 1 (CLF). Like IL-27,p28/CLF is produced by dendritic cells and is biologically active on human NK cells,increasing IL-12- and IL-2-induced IFN-gamma production and activation marker expression. Experiments with Ba/F3 transfectants indicate that p28/CLF activates cells expressing IL-6Ralpha in addition to the IL-27R subunits. When tested on CD4 and CD8 T cells,p28/CLF induces IL-6Ralpha-dependent STAT1 and STAT3 phosphorylation. Furthermore,p28/CLF inhibits CD4 T cell proliferation and induces IL-17 and IL-10 secretion. These results indicate that p28/CLF may participate in the regulation of NK and T cell functions by dendritic cells. The p28/CLF complex engages IL-6R and may therefore be useful for therapeutic applications targeting cells expressing this receptor. Blocking IL-6R using humanized mAbs such as tocilizumab has been shown to be beneficial in pathologies like rheumatoid arthritis and juvenile idiopathic arthritis. The identification of a new IL-6R ligand is therefore important for a complete understanding of the mechanism of action of this emerging class of immunosuppressors.
View Publication
Reference
Yu J et al. (JAN 2010)
Blood 115 2 274--81
CD94 surface density identifies a functional intermediary between the CD56bright and CD56dim human NK-cell subsets.
Human CD56(bright) natural killer (NK) cells possess little or no killer immunoglobulin-like receptors (KIRs),high interferon-gamma (IFN-gamma) production,but little cytotoxicity. CD56(dim) NK cells have high KIR expression,produce little IFN-gamma,yet display high cytotoxicity. We hypothesized that,if human NK maturation progresses from a CD56(bright) to a CD56(dim) phenotype,an intermediary NK cell must exist,which demonstrates more functional overlap than these 2 subsets,and we used CD94 expression to test our hypothesis. CD94(high)CD56(dim) NK cells express CD62L,CD2,and KIR at levels between CD56(bright) and CD94(low)CD56(dim) NK cells. CD94(high)CD56(dim) NK cells produce less monokine-induced IFN-gamma than CD56(bright) NK cells but much more than CD94(low)CD56(dim) NK cells because of differential interleukin-12-mediated STAT4 phosphorylation. CD94(high)CD56(dim) NK cells possess a higher level of granzyme B and perforin expression and CD94-mediated redirected killing than CD56(bright) NK cells but lower than CD94(low)CD56(dim) NK cells. Collectively,our data suggest that the density of CD94 surface expression on CD56(dim) NK cells identifies a functional and likely developmental intermediary between CD56(bright) and CD94(low)CD56(dim) NK cells. This supports the notion that,in vivo,human CD56(bright) NK cells progress through a continuum of differentiation that ends with a CD94(low)CD56(dim) phenotype.
View Publication
Reference
Pelletier M et al. (JAN 2010)
Blood 115 2 335--43
Evidence for a cross-talk between human neutrophils and Th17 cells.
Interleukin-17A (IL-17A) and IL-17F are 2 of several cytokines produced by T helper 17 cells (Th17),which are able to indirectly induce the recruitment of neutrophils. Recently,human Th17 cells have been phenotypically characterized and shown to express discrete chemokine receptors,including CCR2 and CCR6. Herein,we show that highly purified neutrophils cultured with interferon-gamma plus lipopolysaccharide produce the CCL2 and CCL20 chemokines,the known ligands of CCR2 and CCR6,respectively. Accordingly,supernatants from activated neutrophils induced chemotaxis of Th17 cells,which was greatly suppressed by anti-CCL20 and anti-CCL2 antibodies. We also discovered that activated Th17 cells could directly chemoattract neutrophils via the release of biologically active CXCL8. Consistent with this reciprocal recruitment,neutrophils and Th17 cells were found in gut tissue from Crohn disease and synovial fluid from rheumatoid arthritis patients. Finally,we report that,although human Th17 cells can directly interact with freshly isolated or preactivated neutrophils via granulocyte-macrophage colony-stimulating factor,tumor necrosis factor-alpha,and interferon-gamma release,these latter cells cannot be activated by IL-17A and IL-17F,because of their lack of IL-17RC expression. Collectively,our results reveal a novel chemokine-dependent reciprocal cross-talk between neutrophils and Th17 cells,which may represent a useful target for the treatment of chronic inflammatory diseases.
View Publication
Reference
Jeffery LE et al. (NOV 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 9 5458--67
1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3.
The active form of vitamin D,1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)),has potent immunomodulatory properties that have promoted its potential use in the prevention and treatment of infectious disease and autoimmune conditions. A variety of immune cells,including macrophages,dendritic cells,and activated T cells express the intracellular vitamin D receptor and are responsive to 1,25(OH)(2)D(3.) Despite this,how 1,25(OH)(2)D(3) regulates adaptive immunity remains unclear and may involve both direct and indirect effects on the proliferation and function of T cells. To further clarify this issue,we have assessed the effects of 1,25(OH)(2)D(3) on human CD4(+)CD25(-) T cells. We observed that stimulation of CD4(+)CD25(-) T cells in the presence of 1,25(OH)(2)D(3) inhibited production of proinflammatory cytokines including IFN- gamma,IL-17,and IL-21 but did not substantially affect T cell division. In contrast to its inhibitory effects on inflammatory cytokines,1,25(OH)(2)D(3) stimulated expression of high levels of CTLA-4 as well as FoxP3,the latter requiring the presence of IL-2. T cells treated with 1,25(OH)(2)D(3) could suppress proliferation of normally responsive T cells,indicating that they possessed characteristics of adaptive regulatory T cells. Our results suggest that 1,25(OH)(2)D(3) and IL-2 have direct synergistic effects on activated T cells,acting as potent anti-inflammatory agents and physiologic inducers of adaptive regulatory T cells.
View Publication
Reference
Milush JM et al. (NOV 2009)
Blood 114 23 4823--31
Functionally distinct subsets of human NK cells and monocyte/DC-like cells identified by coexpression of CD56, CD7, and CD4.
The lack of natural killer (NK) cell-specific markers,as well as the overlap among several common surface antigens and functional properties,has obscured the delineation between NK cells and dendritic cells. Here,novel subsets of peripheral blood CD3/14/19(neg) NK cells and monocyte/dendritic cell (DC)-like cells were identified on the basis of CD7 and CD4 expression. Coexpression of CD7 and CD56 differentiates NK cells from CD56+ monocyte/DC-like cells,which lack CD7. In contrast to CD7+CD56+ NK cells,CD7(neg)CD56+ cells lack expression of NK cell-associated markers,but share commonalities in their expression of various monocyte/DC-associated markers. Using CD7,we observed approximately 60% of CD4+CD56+ cells were CD7(neg) cells,indicating the actual frequency of activated CD4+ NK cells is much lower in the blood than previously recognized. Functionally,only CD7+ NK cells secrete gamma interferon (IFNgamma) and degranulate after interleukin-12 (IL-12) plus IL-18 or K562 target cell stimulation. Furthermore,using CD7 to separate CD56+ NK cells and CD56+ myeloid cells,we demonstrate that unlike resting CD7+CD56+ NK cells,the CD7(neg)CD56+ myeloid cells stimulate a potent allogeneic response. Our data indicate that CD7 and CD56 coexpression discriminates NK cells from CD7(neg)CD56+ monocyte/DC-like cells,thereby improving our ability to study the intricacies of NK-cell subset phenotypes and functions in vivo.
View Publication
Reference
Hinrichs CS et al. (OCT 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 41 17469--74
Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity.
Effector cells derived from central memory CD8(+) T cells were reported to engraft and survive better than those derived from effector memory populations,suggesting that they are superior for use in adoptive immunotherapy studies. However,previous studies did not evaluate the relative efficacy of effector cells derived from naïve T cells. We sought to investigate the efficacy of tumor-specific effector cells derived from naïve or central memory T-cell subsets using transgenic or retrovirally transduced T cells engineered to express a tumor-specific T-cell receptor. We found that naïve,rather than central memory T cells,gave rise to an effector population that mediated superior antitumor immunity upon adoptive transfer. Effector cells developed from naïve T cells lost the expression of CD62L more rapidly than those derived from central memory T cells,but did not acquire the expression of KLRG-1,a marker for terminal differentiation and replicative senescence. Consistent with this KLRG-1(-) phenotype,naïve-derived cells were capable of a greater proliferative burst and had enhanced cytokine production after adoptive transfer. These results indicate that insertion of genes that confer antitumor specificity into naïve rather than central memory CD8(+) T cells may allow superior efficacy upon adoptive transfer.
View Publication
Reference
Carlsten M et al. (OCT 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 8 4921--30
Primary human tumor cells expressing CD155 impair tumor targeting by down-regulating DNAM-1 on NK cells.
The activating NK cell receptor DNAX accessory molecule-1 (DNAM-1) contributes to tumor immune surveillance and plays a crucial role in NK cell-mediated recognition of several types of human tumors,including ovarian carcinoma. Here,we have analyzed the receptor repertoire and functional integrity of NK cells in peritoneal effusions from patients with ovarian carcinoma. Relative to autologous peripheral blood NK cells,tumor-associated NK cells expressed reduced levels of the DNAM-1,2B4,and CD16 receptors and were hyporesponsive to HLA class I-deficient K562 cells and to coactivation via DNAM-1 and 2B4. Moreover,tumor-associated NK cells were also refractory to CD16 receptor stimulation,resulting in diminished Ab-dependent cellular cytotoxicity against autologous tumor cells. Coincubation of NK cells with ovarian carcinoma cells expressing the DNAM-1 ligand CD155 led to reduction of DNAM-1 expression. Therefore,NK cell-mediated rejection of ovarian carcinoma may be limited by perturbed DNAM-1 expression on tumor-associated NK cells induced by chronic ligand exposure. Thus,these data support the notion that tumor-induced alterations of activating NK cell receptor expression may hamper immune surveillance and promote tumor progression.
View Publication
Reference
Lee JY et al. (DEC 2009)
Journal of leukocyte biology 86 6 1285--94
Dynamic alterations in chemokine gradients induce transendothelial shuttling of human T cells under physiologic shear conditions.
The active movement of cells from subendothelial compartments into the bloodstream (intravasation) has been recognized for several decades by histologic and physiologic studies,yet the molecular effectors of this process are relatively uncharacterized. For extravasation,studies based predominantly on static transwell assays support a general model,whereby transendothelial migration (TEM) occurs via chemoattraction toward increasing chemokine concentrations. However,this model of chemotaxis cannot readily reconcile how chemokines influence intravasation,as shear forces of blood flow would likely abrogate luminal chemokine gradient(s). Thus,to analyze how T cells integrate perivascular chemokine signals under physiologic flow,we developed a novel transwell-based flow chamber allowing for real-time modulation of chemokine levels above (luminal/apical compartment) and below (abluminal/subendothelial compartment) HUVEC monolayers. We routinely observed human T cell TEM across HUVEC monolayers with the combination of luminal CXCL12 and abluminal CCL5. With increasing concentrations of CXCL12 in the luminal compartment,transmigrated T cells did not undergo retrograde transendothelial migration (retro-TEM). However,when exposedto abluminal CXCL12,transmigrated T cells underwent striking retro-TEM and re-entered the flow stream [corrected]. This CXCL12 fugetactic (chemorepellant) effect was concentration-dependent,augmented by apical flow,blocked by antibodies to integrins,and reduced by AMD3100 in a dose-dependent manner. Moreover,CXCL12-induced retro-TEM was inhibited by PI3K antagonism and cAMP agonism. These findings broaden our understanding of chemokine biology and support a novel paradigm by which temporospatial modulations in subendothelial chemokine display drive cell migration from interstitial compartments into the bloodstream.
View Publication
Reference
Gigley JP et al. (DEC 2009)
Infection and immunity 77 12 5380--8
Long-term immunity to lethal acute or chronic type II Toxoplasma gondii infection is effectively induced in genetically susceptible C57BL/6 mice by immunization with an attenuated type I vaccine strain.
C57BL/6 (B6) mice are genetically highly susceptible to chronic type II Toxoplasma gondii infections that invariably cause lethal toxoplasmic encephalitis. We examined the ability of an attenuated type I vaccine strain to elicit long-term immunity to lethal acute or chronic type II infections in susceptible B6 mice. Mice immunized with the type I cps1-1 vaccine strain were not susceptible to a lethal (100-cyst) challenge with the type II strain ME49. Immunized mice challenged with 10 ME49 cysts exhibited significant reductions in brain cyst and parasite burdens compared to naive mice,regardless of the route of challenge infection. Remarkably,cps1-1 strain-immunized B6 mice chronically infected with ME49 survived for at least 12 months without succumbing to the chronic infection. Potent immunity to type II challenge infections persisted for at least 10 months after vaccination. While the cps1-1 strain-elicited immunity did not prevent the establishment of a chronic infection or clear established brain cysts,cps1-1 strain-elicited CD8(+) immune T cells significantly inhibited recrudescence of brain cysts during chronic ME49 infection. In addition,we show that uracil starvation of the cps1-1 strain induces early markers of bradyzoite differentiation. Collectively,these results suggest that more effective immune control of chronic type II infection in the genetically susceptible B6 background is established by vaccination with the nonreplicating type I uracil auxotroph cps1-1 strain.
View Publication
Reference
Costantini JL et al. (NOV 2009)
Blood 114 21 4703--12
TAPP2 links phosphoinositide 3-kinase signaling to B-cell adhesion through interaction with the cytoskeletal protein utrophin: expression of a novel cell adhesion-promoting complex in B-cell leukemia.
Tandem pleckstrin homology domain proteins (TAPPs) are recruited to the plasma membrane via binding to phosphoinositides produced by phosphoinositide 3-kinases (PI3Ks). Whereas PI3Ks are critical for B-cell activation,the functions of TAPP proteins in B cells are unknown. We have identified 40 potential interaction partners of TAPP2 in B cells,including proteins involved in cytoskeletal rearrangement,signal transduction and endocytic trafficking. The association of TAPP2 with the cytoskeletal proteins utrophin and syntrophin was confirmed by Western blotting. We found that TAPP2,syntrophin,and utrophin are coexpressed in normal human B cells and B-chronic lymphocytic leukemia (B-CLL) cells. TAPP2 and syntrophin expression in B-CLL was variable from patient to patient,with significantly higher expression in the more aggressive disease subset identified by zeta-chain-associated protein kinase of 70 kDa (ZAP70) expression and unmutated immunoglobulin heavy chain (IgH) genes. We examined whether TAPP can regulate cell adhesion,a known function of utrophin/syntrophin in other cell types. Expression of membrane-targeted TAPP2 enhanced B-cell adhesion to fibronectin and laminin,whereas PH domain-mutant TAPP2 inhibited adhesion. siRNA knockdown of TAPP2 or utrophin,or treatment with PI3K inhibitors,significantly inhibited adhesion. These findings identify TAPP2 as a novel link between PI3K signaling and the cytoskeleton with potential relevance for leukemia progression.
View Publication
Reference
Zhang J et al. (OCT 2009)
Journal of immunology (Baltimore,Md. : 1950) 183 8 5350--7
Role of TL1A in the pathogenesis of rheumatoid arthritis.
TNF-like ligand 1A (TL1A),a member of the TNF superfamily,is the ligand of DR3 and DcR3. Several types of cells,such as endothelial cells,monocytes/macrophages,dendritic cells,and CD4 and CD8 T cells,are capable of producing this cytokine. In present study,we demonstrated that TL1A aggravated collagen-induced arthritis in mice. It increased collagen-induced arthritis penetrance and clinical scores as well as the severity of the pathological findings. TL1A administration led to the occurrence of multiple enlarged germinal centers in the spleen,and it boosted serum anti-collagen Ab titers in vivo. In vitro,TL1A augmented TNF-alpha production by T cells upon TCR ligation,and it greatly enhanced Th17 differentiation and IL-17 production. We further showed that human rheumatoid arthritis (RA) synovial fluids had elevated TL1A titers,and human chrondrocytes and synovial fibroblasts were capable of secreting TL1A upon TNF-alpha or IL-1beta stimulation. Taken together,these data suggest that TL1A secretion in lymphoid organs might contribute to RA initiation by promoting autoantibody production,and TL1A secretion stimulated by inflammatory cytokines in RA joints might be a part of a vicious circle that aggravates RA pathogenesis.
View Publication