Benoist H et al. (JUL 2009)
Journal of leukocyte biology 86 1 103--14
Two structurally identical mannose-specific jacalin-related lectins display different effects on human T lymphocyte activation and cell death.
Plant lectins displaying similar single sugar-binding specificity and identical molecular structure might present various biological effects. To explore this possibility,the effects on human lymphocytes of two mannose-specific and structurally closely related lectins,Morniga M from Morus nigra and artocarpin from Artocarpus integrifolia were investigated. In silico analysis revealed that Morniga M presents a more largely open carbohydrate-binding cavity than artocarpin,probably allowing interactions with a broader spectrum of carbohydrate moieties. In vitro,Morniga M interacted strongly with the lymphocyte surface and was uptaken quickly by cells. Morniga M and artocarpin triggered the proliferation and activation of human T and NK lymphocytes. A minority of B lymphocytes was activated in artocarpin-treated culture,whereas Morniga M favored the emergence of CD4+ CD8+ T lymphocytes. Moreover,cell death occurred in activated PBMC,activated T lymphocytes,and Jurkat T leukemia cells incubated with Morniga M only. The biological effects of both lectins were dependent on carbohydrate recognition. The Morniga M-induced cell death resulted,at least in part,from caspase-dependent apoptosis and FADD-dependent receptor-mediated cell death. Finally,Morniga M,but not artocarpin,triggered AICD of T lymphocytes. In conclusion,both lectins trigger lymphocyte activation,but only Morniga M induces cell death. In spite of similar in vitro mannose-binding specificities and virtually identical structure,only Morniga M probably interacts with carbohydrate moieties bound to molecules able to induce cell death. The present data suggest that subtle alterations in N-glycans can distinguish activation and cell death molecules at the lymphocyte surface.
View Publication
Reference
Fenoglio D et al. (JUN 2009)
Blood 113 26 6611--8
Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans.
In early HIV-1 infection,Vdelta1 T lymphocytes are increased in peripheral blood and this is related to chemokine receptor expression,chemokine response,and recirculation. Herein we show that,at variance with healthy donors,in HIV-1-infected patients ex vivo-isolated Vdelta1 T cells display cytoplasmic interferon-gamma (IFN-gamma). Interestingly,these cells coexpress cytoplasmic interleukin-17 (IL-17),and bear the CD27 surface marker of the memory T-cell subset. Vdelta1 T cells,isolated from either patients or healthy donors,can proliferate and produce IFN-gamma and IL-17 in response to Candida albicans in vitro,whereas Vdelta2 T cells respond with proliferation and IFN-gamma/IL-17 production to mycobacterial or phosphate antigens. These IFN-gamma/IL-17 double-producer gammadelta T cells express the Th17 RORC and the Th1 TXB21 transcription factors and bear the CCR7 homing receptor and the CD161 molecule that are involved in gammadelta T-cell transendothelial migration. Moreover,Vdelta1 T cells responding to C albicans express the chemokine receptors CCR4 and CCR6. This specifically equipped circulating memory gammadelta T-cell population might play an important role in the control of HIV-1 spreading and in the defense against opportunistic infections,possibly contributing to compensate for the impairment of CD4(+) T cells.
View Publication
Reference
Douglas KB et al. (JUL 2009)
Genes and immunity 10 5 457--69
Complement receptor 2 polymorphisms associated with systemic lupus erythematosus modulate alternative splicing.
Genetic factors influence susceptibility to systemic lupus erythematosus (SLE). A recent family-based analysis in Caucasian and Chinese populations provided evidence for association of single-nucleotide polymorphisms (SNPs) in the complement receptor 2 (CR2/CD21) gene with SLE. Here we confirmed this result in a case-control analysis of an independent European-derived population including 2084 patients with SLE and 2853 healthy controls. A haplotype formed by the minor alleles of three CR2 SNPs (rs1048971,rs17615,rs4308977) showed significant association with decreased risk of SLE (30.4% in cases vs 32.6% in controls,P=0.016,OR=0.90 (0.82-0.98)). Two of these SNPs are in exon 10,directly 5' of an alternatively spliced exon preferentially expressed in follicular dendritic cells (FDC),and the third is in the alternatively spliced exon. Effects of these SNPs and a fourth SNP in exon 11 (rs17616) on alternative splicing were evaluated. We found that the minor alleles of these SNPs decreased splicing efficiency of exon 11 both in vitro and ex vivo. These findings further implicate CR2 in the pathogenesis of SLE and suggest that CR2 variants alter the maintenance of tolerance and autoantibody production in the secondary lymphoid tissues where B cells and FDCs interact.
View Publication
Reference
Grinshtein N et al. (MAY 2009)
Cancer research 69 9 3979--85
Neoadjuvant vaccination provides superior protection against tumor relapse following surgery compared with adjuvant vaccination.
Tumors that recur following surgical resection of melanoma are typically metastatic and associated with poor prognosis. Using the murine B16F10 melanoma and a robust antimelanoma vaccine,we evaluated immunization as a tool to improve tumor-free survival following surgery. We investigated the utility of vaccination in both neoadjuvant and adjuvant settings. Surprisingly,neoadjuvant vaccination was far superior and provided approximately 100% protection against tumor relapse. Neoadjuvant vaccination was associated with enhanced frequencies of tumor-specific T cells within the tumor and the tumor-draining lymph nodes following resection. We also observed increased infiltration of antigen-specific T cells into the area of surgery. This method should be amenable to any vaccine platform and can be readily extended to the clinic.
View Publication
Reference
Takahashi N et al. (MAY 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 9 5515--27
Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients.
Interaction of ICOS with its ligand is essential for germinal center formation,T cell immune responses,and development of autoimmune diseases. Human ICOS deficiency has been identified worldwide in nine patients with identical ICOS mutations. In vitro studies of the patients to date have shown only mild T cell defect. In this study,we report an in-depth analysis of T cell function in two siblings with novel ICOS deficiency. The brother displayed mild skin infections and impaired Ig class switching,whereas the sister had more severe symptoms,including immunodeficiency,rheumatoid arthritis,inflammatory bowel disease,interstitial pneumonitis,and psoriasis. Despite normal CD3/CD28-induced proliferation and IL-2 production in vitro,peripheral blood T cells in both patients showed a decreased percentage of CD4 central and effector memory T cells and impaired production of Th1,Th2,and Th17 cytokines upon CD3/CD28 costimulation or PMA/ionophore stimulation. The defective polarization into effector cells was associated with impaired induction of T-bet,GATA3,MAF,and retinoic acid-related orphan nuclear hormone receptor (RORC). Reduced CTLA-4(+)CD45RO(+)FoxP3(+) regulatory T cells and diminished induction of inhibitory cell surface molecules,including CTLA-4,were also observed in the patients. T cell defect was not restricted to CD4 T cells because reduced memory T cells and impaired IFN-gamma production were also noted in CD8 T cells. Further analysis of the patients demonstrated increased induction of receptor activator of NF-kappaB ligand (RANKL),lack of IFN-gamma response,and loss of Itch expression upon activation in the female patient,who had autoimmunity. Our study suggests that extensive T cell dysfunction,decreased memory T cell compartment,and imbalance between effector and regulatory cells in ICOS-deficient patients may underlie their immunodeficiency and/or autoimmunity.
View Publication
Reference
Jankowska AM et al. (JUN 2009)
Blood 113 25 6403--10
Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms.
Chromosomal abnormalities are frequent in myeloid malignancies,but in most cases of myelodysplasia (MDS) and myeloproliferative neoplasms (MPN),underlying pathogenic molecular lesions are unknown. We identified recurrent areas of somatic copy number-neutral loss of heterozygosity (LOH) and deletions of chromosome 4q24 in a large cohort of patients with myeloid malignancies including MDS and related mixed MDS/MPN syndromes using single nucleotide polymorphism arrays. We then investigated genes in the commonly affected area for mutations. When we sequenced TET2,we found homozygous and hemizygous mutations. Heterozygous and compound heterozygous mutations were found in patients with similar clinical phenotypes without LOH4q24. Clinical analysis showed most TET2 mutations were present in patients with MDS/MPN (58%),including CMML (6/17) or sAML (32%) evolved from MDS/MPN and typical MDS (10%),suggesting they may play a ubiquitous role in malignant evolution. TET2 mutations affected conserved domains and the N terminus. TET2 is widely expressed in hematopoietic cells but its function is unknown,and it lacks homology to other known genes. The frequency of mutations in this candidate myeloid regulatory gene suggests an important role in the pathogenesis of poor prognosis MDS/MPN and sAML and may act as a disease gene marker for these often cytogenetically normal disorders.
View Publication
Reference
Park S-R et al. (MAY 2009)
Nature immunology 10 5 540--50
HoxC4 binds to the promoter of the cytidine deaminase AID gene to induce AID expression, class-switch DNA recombination and somatic hypermutation.
The cytidine deaminase AID (encoded by Aicda in mice and AICDA in humans) is critical for immunoglobulin class-switch recombination (CSR) and somatic hypermutation (SHM). Here we show that AID expression was induced by the HoxC4 homeodomain transcription factor,which bound to a highly conserved HoxC4-Oct site in the Aicda or AICDA promoter. This site functioned in synergy with a conserved binding site for the transcription factors Sp1,Sp3 and NF-kappaB. HoxC4 was 'preferentially' expressed in germinal center B cells and was upregulated by engagement of CD40 by CD154,as well as by lipopolysaccharide and interleukin 4. HoxC4 deficiency resulted in impaired CSR and SHM because of lower AID expression and not some other putative HoxC4-dependent activity. Enforced expression of AID in Hoxc4(-/-) B cells fully restored CSR. Thus,HoxC4 directly activates the Aicda promoter,thereby inducing AID expression,CSR and SHM.
View Publication
Reference
Maldonado RA et al. (APR 2009)
The Journal of experimental medicine 206 4 877--92
Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse.
The antigen recognition interface formed by T helper precursors (Thps) and antigen-presenting cells (APCs),called the immunological synapse (IS),includes receptors and signaling molecules necessary for Thp activation and differentiation. We have recently shown that recruitment of the interferon-gamma receptor (IFNGR) into the IS correlates with the capacity of Thps to differentiate into Th1 effector cells,an event regulated by signaling through the functionally opposing receptor to interleukin-4 (IL4R). Here,we show that,similar to IFN-gamma ligation,TCR stimuli induce the translocation of signal transducer and activator of transcription 1 (STAT1) to IFNGR1-rich regions of the membrane. Unexpectedly,STAT1 is preferentially expressed,is constitutively serine (727) phosphorylated in Thp,and is recruited to the IS and the nucleus upon TCR signaling. IL4R engagement controls this process by interfering with both STAT1 recruitment and nuclear translocation. We also show that in cells with deficient Th1 or constitutive Th2 differentiation,the IL4R is recruited to the IS. This observation suggest that the IL4R is retained outside the IS,similar to the exclusion of IFNGR from the IS during IL4R signaling. This study provides new mechanistic cues for the regulation of lineage commitment by mutual immobilization of functionally antagonistic membrane receptors.
View Publication
Reference
Fuschiotti P et al. (APR 2009)
Arthritis and rheumatism 60 4 1119--28
Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis.
OBJECTIVE: T lymphocytes play an important role in systemic sclerosis (SSc),a connective tissue disease characterized by inflammation,fibrosis,and vascular damage. While their precise role and antigen specificity are unclear,T cell-derived cytokines likely contribute to the induction of fibrosis. The aim of this study was to establish the role of cytokine dysregulation by T cells in the pathogenesis of SSc. METHODS: To identify relationships between a specific cytokine,T cell subset,and the disease course,we studied a large cohort of patients with diffuse cutaneous SSc (dcSSc) or limited cutaneous SSc (lcSSc). Using Luminex analysis and intracellular cytokine staining,we analyzed the intrinsic ability of CD4+ and CD8+ T cell subsets to produce cytokines following in vitro activation. RESULTS: High levels of the profibrotic type 2 cytokine interleukin-13 (IL-13) were produced following activation of peripheral blood effector CD8+ T cells from SSc patients as compared with normal controls or with patients with rheumatoid arthritis. In contrast,CD4+ T cells showed a lower and more variable level of IL-13 production. This abnormality correlated with the extent of fibrosis and was more pronounced in dcSSc patients than in lcSSc patients. CONCLUSION: Dysregulated IL-13 production by effector CD8+ T cells is important in the pathogenesis of SSc and is critical in the predisposition to more severe forms of cutaneous disease. Our study is the first to identify a specific T cell phenotype that correlates with disease severity in SSc and can be used as a marker of immune dysfunction in SSc and as a novel therapeutic target.
View Publication
Reference
Rizzuto GA et al. (APR 2009)
The Journal of experimental medicine 206 4 849--66
Self-antigen-specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response.
A primary goal of cancer immunotherapy is to improve the naturally occurring,but weak,immune response to tumors. Ineffective responses to cancer vaccines may be caused,in part,by low numbers of self-reactive lymphocytes surviving negative selection. Here,we estimated the frequency of CD8(+) T cells recognizing a self-antigen to be textless0.0001% ( approximately 1 in 1 million CD8(+) T cells),which is so low as to preclude a strong immune response in some mice. Supplementing this repertoire with naive antigen-specific cells increased vaccine-elicited tumor immunity and autoimmunity,but a threshold was reached whereby the transfer of increased numbers of antigen-specific cells impaired functional benefit,most likely because of intraclonal competition in the irradiated host. We show that cells primed at precursor frequencies below this competitive threshold proliferate more,acquire polyfunctionality,and eradicate tumors more effectively. This work demonstrates the functional relevance of CD8(+) T cell precursor frequency to tumor immunity and autoimmunity. Transferring optimized numbers of naive tumor-specific T cells,followed by in vivo activation,is a new approach that can be applied to human cancer immunotherapy. Further,precursor frequency as an isolated variable can be exploited to augment efficacy of clinical vaccine strategies designed to activate any antigen-specific CD8(+) T cells.
View Publication
Reference
Tian F et al. (MAY 2009)
Blood 113 21 5352--60
Inhibition of endothelial progenitor cell differentiation by VEGI.
Endothelial progenitor cells (EPCs) play a critical role in postnatal and tumor vasculogenesis. Vascular endothelial growth inhibitor (VEGI; TNFSF15) has been shown to inhibit endothelial cell proliferation by inducing apoptosis. We report here that VEGI inhibits the differentiation of EPCs from mouse bone marrow-derived Sca1(+) mononuclear cells. Analysis of EPC markers indicates a significant decline of the expression of endothelial cell markers,but not stem cell markers,on VEGI-treated cells. Consistently,the VEGI-treated cells exhibit a decreased capability to adhere,migrate,and form capillary-like structures on Matrigel. In addition,VEGI induces apoptosis of differentiated EPCs but not early-stage EPCs. When treated with VEGI,an increase of phospho-Erk and a decrease of phospho-Akt are detected in early-stage EPCs,whereas activation of nuclear factor-kappaB,jun N-terminal kinase,and caspase-3 is seen in differentiated EPCs. Furthermore,VEGI-induced apoptosis of differentiated EPC is,at least partly,mediated by death receptor-3 (DR3),which is detected on differentiated EPC only. VEGI-induced apoptosis signals can be inhibited by neutralizing antibodies against DR3 or recombinant extracellular domain of DR3. These findings indicate that VEGI may participate in the modulation of postnatal vasculogenesis by inhibiting EPC differentiation.
View Publication
Reference
Pua HH et al. (APR 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 7 4046--55
Autophagy is essential for mitochondrial clearance in mature T lymphocytes.
Macroautophagy plays an important role in the regulation of cell survival,metabolism,and the lysosomal degradation of cytoplasmic material. In the immune system,autophagy contributes to the clearance of intracellular pathogens,MHCII cross-presentation of endogenous Ags,as well as cell survival. We and others have demonstrated that autophagy occurs in T lymphocytes and contributes to the regulation of their cellular function,including survival and proliferation. Here we show that the essential autophagy gene Atg7 is required in a cell-intrinsic manner for the survival of mature primary T lymphocytes. We also find that mitochondrial content is developmentally regulated in T but not in B cells,with exit from the thymus marking a transition from high mitochondrial content in thymocytes to lower mitochondrial content in mature T cells. Macroautophagy has been proposed to play an important role in the clearance of intracellular organelles,and autophagy-deficient mature T cells fail to reduce their mitochondrial content in vivo. Consistent with alterations in mitochondrial content,autophagy-deficient T cells have increased reactive oxygen species production as well as an imbalance in pro- and antiapoptotic protein expression. With much recent interest in the possibility of autophagy-dependent developmentally programmed clearance of organelles in lens epithelial cells and erythrocytes,our data demonstrate that autophagy may have a physiologically significant role in the clearance of superfluous mitochondria in T lymphocytes as part of normal T cell homeostasis.
View Publication