Fogli M et al. (JUL 2008)
PLoS pathogens 4 7 e1000101
Lysis of endogenously infected CD4+ T cell blasts by rIL-2 activated autologous natural killer cells from HIV-infected viremic individuals.
Understanding the cellular mechanisms that ensure an appropriate innate immune response against viral pathogens is an important challenge of biomedical research. In vitro studies have shown that natural killer (NK) cells purified from healthy donors can kill heterologous cell lines or autologous CD4+ T cell blasts exogenously infected with several strains of HIV-1. However,it is not known whether the deleterious effects of high HIV-1 viremia interferes with the NK cell-mediated cytolysis of autologous,endogenously HIV-1-infected CD4+ T cells. Here,we stimulate primary CD4+ T cells,purified ex vivo from HIV-1-infected viremic patients,with PHA and rIL2 (with or without rIL-7). This experimental procedure allows for the significant expansion and isolation of endogenously infected CD4+ T cell blasts detected by intracellular staining of p24 HIV-1 core antigen. We show that,subsequent to the selective down-modulation of MHC class-I (MHC-I) molecules,HIV-1-infected p24(pos) blasts become partially susceptible to lysis by rIL-2-activated NK cells,while uninfected p24(neg) blasts are spared from killing. This NK cell-mediated killing occurs mainly through the NKG2D activation pathway. However,the degree of NK cell cytolytic activity against autologous,endogenously HIV-1-infected CD4+ T cell blasts that down-modulate HLA-A and -B alleles and against heterologous MHC-I(neg) cell lines is particularly low. This phenomenon is associated with the defective surface expression and engagement of natural cytotoxicity receptors (NCRs) and with the high frequency of the anergic CD56(neg)/CD16(pos) subsets of highly dysfunctional NK cells from HIV-1-infected viremic patients. Collectively,our data demonstrate that the chronic viral replication of HIV-1 in infected individuals results in several phenotypic and functional aberrancies that interfere with the NK cell-mediated killing of autologous p24(pos) blasts derived from primary T cells.
View Publication
Reference
Saresella M et al. (OCT 2008)
FASEB journal : official publication of the Federation of American Societies for Experimental Biology 22 10 3500--8
CD4+CD25+FoxP3+PD1- regulatory T cells in acute and stable relapsing-remitting multiple sclerosis and their modulation by therapy.
The intracellular expression of the programmed death receptor 1 (PD1) identifies a subset of naive T(reg) cells with enhanced suppressive ability; antigen stimulation results in the surface expression of PD1. Because the role of T(reg) impairments in multiple sclerosis (MS) is still contradictory,we analyzed naive PD1- and PD1+ T(reg) cells in peripheral blood and cerebrospinal fluid (CSF) of relapsing-remitting multiple sclerosis (RR-MS) patients and of healthy control subjects. Results showed that 1) CSF PD1- T(reg) cells were significantly augmented in MS patients; 2) PD1- T(reg) cells were significantly increased in the peripheral blood of patients with stable disease (SMS) compared to those with acute (AMS) disease,and in patients responding to glatiramer acetate (COPA) compared to AMS- and COPA-unresponsive patients; and 3) PD1+ T(reg) cells were similar in CSF and peripheral blood of all groups analyzed. PD1- T(reg) cells were not increased in the peripheral blood of interferon-beta (IFNbeta) -responsive patients,but the suppressive ability of T(reg) cells was significantly higher in SMS and in COPA- or IFNbeta-responsive compared to AMS- and COPA-unresponsive individuals. The data herein suggest that PD1- T(reg) cells play a pivotal role in MS and offer a biological explanation for disease relapse and for the mechanism associated with response to COPA and IFNbeta.
View Publication
Reference
Lalli PN et al. (SEP 2008)
Blood 112 5 1759--66
Locally produced C5a binds to T cell-expressed C5aR to enhance effector T-cell expansion by limiting antigen-induced apoptosis.
Our recent studies have shown that immune cell-produced complement provides costimulatory and survival signals to naive CD4(+) T cells. Whether these signals are similarly required during effector cell expansion and what molecular pathways link locally produced complement to T-cell survival were not clarified. To address this,we stimulated monoclonal and polyclonal T cells in vitro and in vivo with antigen-presenting cells (APCs) deficient in the complement regulatory protein,decay accelerating factor (DAF),and/or the complement component C3. We found that T-cell expansion induced by DAF-deficient APCs was augmented with diminished T-cell apoptosis,whereas T-cell expansion induced by C3(-/-) APCs was reduced because of enhanced T-cell apoptosis. These effects were traced to locally produced C5a,which through binding to T cell-expressed C5aR,enhanced expression of Bcl-2 and prevented Fas up-regulation. The results show that C5aR signal transduction in T cells is important to allow optimal T-cell expansion,as well as to maintain naive cell viability,and does so by suppressing programmed cell death.
View Publication
Reference
Arendt BK et al. (SEP 2008)
Blood 112 5 1931--41
Biologic and genetic characterization of the novel amyloidogenic lambda light chain-secreting human cell lines, ALMC-1 and ALMC-2.
Primary systemic amyloidosis (AL) is a rare monoclonal plasma cell (PC) disorder characterized by the deposition of misfolded immunoglobulin (Ig) light chains (LC) in vital organs throughout the body. To our knowledge,no cell lines have ever been established from AL patients. Here we describe the establishment of the ALMC-1 and ALMC-2 cell lines from an AL patient. Both cell lines exhibit a PC phenotype and display cytokine-dependent growth. Using a comprehensive genetic approach,we established the genetic relationship between the cell lines and the primary patient cells,and we were also able to identify new genetic changes accompanying tumor progression that may explain the natural history of this patient's disease. Importantly,we demonstrate that free lambda LC secreted by both cell lines contained a beta structure and formed amyloid fibrils. Despite absolute Ig LC variable gene sequence identity,the proteins show differences in amyloid formation kinetics that are abolished by the presence of Na(2)SO(4). The formation of amyloid fibrils from these naturally secreting human LC cell lines is unprecedented. Moreover,these cell lines will provide an invaluable tool to better understand AL,from the combined perspectives of amyloidogenic protein structure and amyloid formation,genetics,and cell biology.
View Publication
Reference
De Sarno P et al. (JUL 2008)
Journal of immunology (Baltimore,Md. : 1950) 181 1 338--45
Lithium prevents and ameliorates experimental autoimmune encephalomyelitis.
Experimental autoimmune encephalomyelitis (EAE) models,in animals,many characteristics of multiple sclerosis,for which there is no adequate therapy. We investigated whether lithium,an inhibitor of glycogen synthase kinase-3 (GSK3),can ameliorate EAE in mice. Pretreatment with lithium markedly suppressed the clinical symptoms of EAE induced in mice by myelin oligodendrocyte glycoprotein peptide (MOG35-55) immunization and greatly reduced demyelination,microglia activation,and leukocyte infiltration in the spinal cord. Lithium administered postimmunization,after disease onset,reduced disease severity and facilitated partial recovery. Conversely,in knock-in mice expressing constitutively active GSK3,EAE developed more rapidly and was more severe. In vivo lithium therapy suppressed MOG35-55-reactive effector T cell differentiation,greatly reducing in vitro MOG35-55- stimulated proliferation of mononuclear cells from draining lymph nodes and spleens,and MOG35-55-induced IFN-gamma,IL-6,and IL-17 production by splenocytes isolated from MOG35-55-immunized mice. In relapsing/remitting EAE induced with proteolipid protein peptide139-151,lithium administered after the first clinical episode maintained long-term (90 days after immunization) protection,and after lithium withdrawal the disease rapidly relapsed. These results demonstrate that lithium suppresses EAE and identify GSK3 as a new target for inhibition that may be useful for therapeutic intervention of multiple sclerosis and other autoimmune and inflammatory diseases afflicting the CNS.
View Publication
Reference
Lambert AA et al. (AUG 2008)
Blood 112 4 1299--307
The C-type lectin surface receptor DCIR acts as a new attachment factor for HIV-1 in dendritic cells and contributes to trans- and cis-infection pathways.
The dynamic interplay between dendritic cells (DCs) and human immunodeficiency virus type-1 (HIV-1) is thought to result in viral dissemination and evasion of antiviral immunity. Although initial observations suggested that the C-type lectin receptor (CLR) DC-SIGN was responsible for the trans-infection function of the virus,subsequent studies demonstrated that trans-infection of CD4(+) T cells with HIV-1 can also occur through DC-SIGN-independent mechanisms. We demonstrate that a cell surface molecule designated DCIR (for DC immunoreceptor),a member of a recently described family of DC-expressing CLRs,can participate in the capture of HIV-1 and promote infection in trans and in cis of autologous CD4(+) T cells from human immature monocyte-derived DCs. The contribution of DCIR to these processes was revealed using DCIR-specific siRNAs and a polyclonal antibody specific for the carbohydrate recognition domain of DCIR. Data from transfection experiments indicated that DCIR acts as a ligand for HIV-1 and is involved in events leading to productive virus infection. Finally,we show that the neck domain of DCIR is important for the DCIR-mediated effect on virus binding and infection. These results point to a possible role for DCIR in HIV-1 pathogenesis by supporting the productive infection of DCs and promoting virus propagation.
View Publication
Reference
Moulton VR et al. (JUL 2008)
The Journal of biological chemistry 283 29 20037--44
The RNA-stabilizing protein HuR regulates the expression of zeta chain of the human T cell receptor-associated CD3 complex.
T cell dysfunction is crucial to the pathogenesis of systemic lupus erythematosus (SLE); however,the molecular mechanisms involved in the deficient expression of the T cell receptor-associated CD3zeta chain in SLE are not clear. SLE T cells express abnormally increased levels of an alternatively spliced isoform of CD3zeta that lacks a 562-bp region in its 3'-untranslated region (UTR). We showed previously that two adenosine/uridine-rich elements (ARE) in this splice-deleted region of CD3zeta transcript are critical for the mRNA stability and protein expression of CD3zeta. In this study we show for the first time that the mRNA-stabilizing protein HuR binds to these two ARE bearing regions of CD3zeta 3'-UTR. Knockdown of HuR resulted in decreased expression of the CD3zeta chain,whereas overexpression led to the increase of CD3zeta chain levels. Additionally,overexpression of HuR in human T cells resulted in increased mRNA stability of CD3zeta. Our results identify the 3'-UTR of CD3zeta as a novel target for the mRNA-stabilizing protein HuR. Thus,the absence of two critical AREs in the alternatively spliced CD3zeta 3'-UTR found in SLE T cells may result in decreased HuR binding,representing a possible molecular mechanism contributing to the reduced stability and expression of CD3zeta in SLE.
View Publication
Reference
Chang SK et al. (JUN 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 11 7394--403
B lymphocyte stimulator regulates adaptive immune responses by directly promoting dendritic cell maturation.
B lymphocyte stimulator (BLyS) is a well-known direct costimulator of adaptive immune cells,particularly B lineage cells. However,we have reported recently that BLyS is also able to activate monocytes. Other innate immune cells,such as dendritic cells (DCs),play a key role in the initiation of adaptive immune responses and the purpose of the current study was to assess whether there is a direct role for BLyS in modulating human DC functions. In this study,we show that BLyS induces DC activation and maturation. Thus,BLyS strongly induced up-regulation of surface costimulatory molecule expression and secretion of specific cytokines and chemokines in DCs. BLyS-stimulated DCs (BLyS-DCs) were also able to augment allogeneic CD4 T cell proliferation to a greater extent than control DCs. BLyS-DCs secreted elevated levels of the major Th1-polarizing cytokine,IL-12p70,and they promoted naive CD4 T cell differentiation into Th1 T cells. Regarding BLyS receptor expression,DCs primarily express cytoplasmic transmembrane activator and CAML interactor; however,low levels of cell surface transmembrane activator and CAML interactor are expressed as well. Collectively,our data suggest that BLyS may modulate adaptive immune cells indirectly by inducing DC maturation.
View Publication
Reference
Mauldin JP et al. (MAY 2008)
Circulation 117 21 2785--92
Reduced expression of ATP-binding cassette transporter G1 increases cholesterol accumulation in macrophages of patients with type 2 diabetes mellitus.
BACKGROUND: Patients with type 2 diabetes mellitus are at increased risk for the development of atherosclerosis. A pivotal event in the development of atherosclerosis is macrophage foam cell formation. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 regulate macrophage cholesterol efflux and hence play a vital role in macrophage foam cell formation. We have previously found that chronic elevated glucose reduces ABCG1 expression. In the present study,we examined whether patients with type 2 diabetes mellitus had decreased ABCG1 and/or ABCA1,impaired cholesterol efflux,and increased macrophage foam cell formation. METHODS AND RESULTS: Blood was collected from patients with and without type 2 diabetes mellitus. Peripheral blood monocytes were differentiated into macrophages,and cholesterol efflux assays,immunoblots,histological analysis,and intracellular cholesteryl ester measurements were performed. Macrophages from patients with type 2 diabetes mellitus had a 30% reduction in cholesterol efflux with a corresponding 60% increase in cholesterol accumulation relative to control subjects. ABCG1 was present in macrophages from control subjects but was undetectable in macrophages from patients with type 2 diabetes mellitus. In contrast,ABCA1 expression in macrophages was similar in both control subjects and patients with type 2 diabetes mellitus. Macrophage expression of ABCG1 in both patients and control subjects was induced by treatment with the liver X receptor agonist TO-901317. Upregulation of liver X receptor dramatically reduced foam cell formation in macrophages from patients with type 2 diabetes mellitus. CONCLUSIONS: ABCG1 expression and cholesterol efflux are reduced in patients with type 2 diabetes mellitus. This impaired ABCG1-mediated cholesterol efflux significantly correlates with increased intracellular cholesterol accumulation. Strategies to upregulate ABCG1 expression and function in type 2 diabetes mellitus could have therapeutic potential for limiting the accelerated vascular disease observed in patients with type 2 diabetes mellitus.
View Publication
Reference
Suto A et al. (JUN 2008)
The Journal of experimental medicine 205 6 1369--79
Development and characterization of IL-21-producing CD4+ T cells.
It has recently been shown that interleukin (IL)-21 is produced by Th17 cells,functions as an autocrine growth factor for Th17 cells,and plays critical roles in autoimmune diseases. In this study,we investigated the differentiation and characteristics of IL-21-producing CD4(+) T cells by intracellular staining. Unexpectedly,we found that under Th17-polarizing conditions,the majority of IL-21-producing CD4(+) T cells did not produce IL-17A and -17F. We also found that IL-6 and -21 potently induced the development of IL-21-producing CD4(+) T cells without the induction of IL-4,IFN-gamma,IL-17A,or IL-17F production. On the other hand,TGF-beta inhibited IL-6- and IL-21-induced development of IL-21-producing CD4(+) T cells. IL-2 enhanced the development of IL-21-producing CD4(+) T cells under Th17-polarizing conditions. Finally,IL-21-producing CD4(+) T cells exhibited a stable phenotype of IL-21 production in the presence of IL-6,but retained the potential to produce IL-4 under Th2-polarizing conditions and IL-17A under Th17-polarizing conditions. These results suggest that IL-21-producing CD4(+) T cells exhibit distinct characteristics from Th17 cells and develop preferentially in an IL-6-rich environment devoid of TGF-beta,and that IL-21 functions as an autocrine growth factor for IL-21-producing CD4(+) T cells.
View Publication
Reference
Furuta S et al. (MAY 2008)
Journal of immunology (Baltimore,Md. : 1950) 180 10 6656--62
Overlapping and distinct roles of STAT4 and T-bet in the regulation of T cell differentiation and allergic airway inflammation.
T-bet and STAT4 play critical roles in helper T cell differentiation,especially for Th1 cells. However,it is still unknown about the relative importance and redundancy of T-bet and STAT4 for Th1 differentiation. It is also unknown about their independent role of T-bet and STAT4 in the regulation of allergic airway inflammation. In this study,we addressed these issues by comparing T-bet-deficient (T-bet(-/-)) mice,STAT4(-/-) mice,and T-bet- and STAT4-double-deficient (T-bet(-/-)STAT4(-/-)) mice on the same genetic background. Th1 differentiation was severely decreased in T-bet(-/-) mice and STAT4(-/-) mice as compared with that in wild-type mice,but Th1 differentiation was still observed in T-bet(-/-) mice and STAT4(-/-) mice. However,Th1 cells were hardly detected in T-bet(-/-)STAT4(-/-) mice. In contrast,the maintenance of Th17 cells was enhanced in T-bet(-/-) mice but was reduced in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. In vivo,Ag-induced eosinophil and neutrophil recruitment into the airways was enhanced in T-bet(-/-) mice but was attenuated in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. Ag-induced IL-17 production in the airways was also diminished in STAT4(-/-) mice and T-bet(-/-)STAT4(-/-) mice. These results indicate that STAT4 not only plays an indispensable role in T-bet-independent Th1 differentiation but also is involved in the maintenance of Th17 cells and the enhancement of allergic airway inflammation.
View Publication
Reference
Glinka Y et al. (JUL 2008)
Journal of leukocyte biology 84 1 302--10
Neuropilin-1 is a receptor for transforming growth factor beta-1, activates its latent form, and promotes regulatory T cell activity.
Neuropilin-1 (Nrp1) is a multifunctional protein,identified principally as a receptor for the class 3 semaphorins and members of the vascular endothelial growth factor (VEGF) family,but it is capable of other interactions. It is a marker of regulatory T cells (Tr),which often carry Nrp1 and latency-associated peptide (LAP)-TGF-beta1 (the latent form). The signaling TGF-beta1 receptors bind only active TGF-beta1,and we hypothesized that Nrp1 binds the latent form. Indeed,we found that Nrp1 is a high-affinity receptor for latent and active TGF-beta1. Free LAP,LAP-TGF-beta1,and active TGF-beta1 all competed with VEGF165 for binding to Nrp1. LAP has a basic,arginine-rich C-terminal motif similar to VEGF and peptides that bind to the b1 domain of Nrp1. A C-terminal LAP peptide (QSSRHRR) bound to Nrp1 and inhibited the binding of VEGF and LAP-TGF-beta1. We also analyzed the effects of Nrp1/LAP-TGF-beta1 coexpression on T cell function. Compared with Nrp1(-) cells,sorted Nrp1+ T cells had a much greater capacity to capture LAP-TGF-beta1. Sorted Nrp1(-) T cells captured soluble Nrp1-Fc,and this increased their ability to capture LAP-TGF-beta1. Conventional CD4+CD25(-)Nrp1(-) T cells coated with Nrp1-Fc/LAP-TGF-beta1 acquired strong Tr activity. Moreover,LAP-TGF-beta was activated by Nrp1-Fc and also by a peptide of the b2 domain of Nrp1 (RKFK; similar to a thrombospondin-1 peptide). Breast cancer cells,which express Nrp1,also captured and activated LAP-TGF-beta1 in a Nrp1-dependent manner. Thus,Nrp1 is a receptor for TGF-beta1,activates its latent form,and is relevant to Tr activity and tumor biology.
View Publication