Enforced fucosylation of neonatal CD34+ cells generates selectin ligands that enhance the initial interactions with microvessels but not homing to bone marrow.
Hematopoietic progenitor/stem cell homing to the bone marrow requires the concerted action of several adhesion molecules. Endothelial P- and E-selectins play an important role in this process,but their ligands on a large subset of neonate-derived human CD34+ cells are absent,leading to a reduced ability to interact with the bone marrow (BM) microvasculature. We report here that this deficiency results from reduced alpha1,3-fucosyltransferase (FucT) expression and activity in these CD34+ cells. Incubation of CD34+ cells with recombinant human FucTVI rapidly corrected the deficiency in nonbinding CD34+ cells and further increased the density of ligands for both P- and E-selectins on all cord blood-derived CD34+ cells. Intravital microscopy studies revealed that these FucTVI-treated CD34+ cells displayed a marked enhancement in their initial interactions with the BM microvasculature,but unexpectedly,homing into the BM was not improved by FucTVI treatment. These data indicate that,although exogenous FucT enzyme activity can rapidly modulate selectin binding avidity of cord blood CD34+ cells,further studies are needed to understand how to translate a positive effect on progenitor cell adhesion in bone marrow microvessels into one that significantly influences migration and lodgement into the parenchyma.
View Publication
Reference
Miyagawa S et al. (SEP 2004)
Journal of immunology (Baltimore,Md. : 1950) 173 6 3945--52
Delta-short consensus repeat 4-decay accelerating factor (DAF: CD55) inhibits complement-mediated cytolysis but not NK cell-mediated cytolysis.
NK cells play a critical role in the rejection of xenografts. In this study,we report on an investigation of the effect of complement regulatory protein,a decay accelerating factor (DAF: CD55),in particular,on NK cell-mediated cytolysis. Amelioration of human NK cell-mediated pig endothelial cell (PEC) and pig fibroblast cell lyses by various deletion mutants and point substitutions of DAF was tested,and compared with their complement regulatory function. Although wild-type DAF and the delta-short consensus repeat (SCR) 1-DAF showed clear inhibition of both complement-mediated and NK-mediated PEC lyses,delta-SCR2-DAF and delta-SCR3-DAF failed to suppress either process. However,delta-SCR4-DAF showed a clear complement regulatory effect,but had no effect on NK cells. Conversely,the point substitution of DAF (L147 x F148 to SS and KKK(125-127) to TTT) was half down-regulated in complement inhibitory function,but the inhibition of NK-mediated PEC lysis remained unchanged. Other complement regulatory proteins,such as the cell membrane-bound form factor H,fH-PI,and C1-inactivator,C1-INH-PI,and CD59 were also assessed,but no suppressive effect on NK cell-mediated PEC lysis was found. These data suggest,for DAF to function on NK cells,SCR2-4 is required but no relation to its complement regulatory function exists.
View Publication
Reference
Koka R et al. (SEP 2004)
Journal of immunology (Baltimore,Md. : 1950) 173 6 3594--8
Cutting edge: murine dendritic cells require IL-15R alpha to prime NK cells.
NK cells protect hosts against viral pathogens and transformed cells,and dendritic cells (DCs) play important roles in activating NK cells. We now find that murine IL-15Ralpha-deficient DCs fail to support NK cell cytolytic activity and elaboration of IFN-gamma,despite the fact that these DCs express normal levels of costimulatory molecules and IL-12. By contrast,IL-15Ralpha expression on NK cells is entirely dispensable for their activation by DCs. In addition,blockade with anti-IL-15Ralpha and anti-IL-2Rbeta but not anti-IL-2Ralpha-specific Abs prevents NK cell activation by wild-type DCs. Finally,presentation of IL-15 by purified IL-15Ralpha/Fc in trans synergizes with IL-12 to support NK cell priming. These findings suggest that murine DCs require IL-15Ralpha to present IL-15 in trans to NK cells during NK cell priming.
View Publication
Reference
Bishop MR et al. (SEP 2004)
British journal of haematology 126 6 837--43
Mixed chimaerism and graft rejection are higher after reduced-intensity allogeneic stem cell transplantation (RIST) with T-cell depleted (TCD) allografts. As host immune status before RIST affects engraftment,we hypothesized that targeted depletion of host lymphocytes prior to RIST would abrogate graft rejection and promote donor chimaerism. Lymphocyte-depleting chemotherapy was administered at conventional doses to subjects prior to RIST with the intent of decreasing CD4(+) counts to textless0.05 x 10(9)cells/l. Subjects (n = 18) then received reduced-intensity conditioning followed by ex vivo TCD human leucocyte antigen-matched sibling allografts. All evaluable patients (n = 17) were engrafted; there were no late graft failures. At day +28 post-RIST,12 patients showed complete donor chimaerism. Mixed chimaerism in the remaining five patients was associated with higher numbers of circulating host CD3(+) cells (P = 0.0032) after lymphocyte-depleting chemotherapy and was preferentially observed in T lymphoid rather than myeloid cells. Full donor chimaerism was achieved in all patients after planned donor lymphocyte infusions. These data reflect the importance of host immune status prior to RIST and suggest that targeted host lymphocyte depletion facilitates the engraftment of TCD allografts. Targeted lymphocyte depletion may permit an individualized approach to conditioning based on host immune status prior to RIST.
View Publication
Reference
Tong W and Lodish HF (SEP 2004)
The Journal of experimental medicine 200 5 569--80
Lnk inhibits Tpo-mpl signaling and Tpo-mediated megakaryocytopoiesis.
Thrombopoietin (Tpo) is the primary cytokine regulating megakaryocyte development and platelet production. Tpo signaling through its receptor,c-mpl,activates multiple pathways including signal transducer and activator of transcription (STAT)3,STAT5,phosphoinositide 3-kinase-Akt,and p42/44 mitogen-activated protein kinase (MAPK). The adaptor protein Lnk is implicated in cytokine receptor and immunoreceptor signaling. Here,we show that Lnk overexpression negatively regulates Tpo-mediated cell proliferation and endomitosis in hematopoietic cell lines and primary hematopoietic cells. Lnk attenuates Tpo-induced S-phase progression in 32D cells expressing mpl,and Lnk decreases Tpo-dependent megakaryocyte growth in bone marrow (BM)-derived megakaryocyte culture. Consistent with this result,we found that in both BM and spleen,Lnk-deficient mice exhibited increased numbers of megakaryocytes with increased ploidy compared with wild-type mice. In addition,Lnk-deficient megakaryocytes derived from BM and spleen showed enhanced sensitivity to Tpo during culture. The absence of Lnk caused enhanced and prolonged Tpo induction of STAT3,STAT5,Akt,and MAPK signaling pathways in CD41+ megakaryocytes. Furthermore,the Src homology 2 domain of Lnk is essential for Lnk's inhibitory function. In contrast,the conserved tyrosine near the COOH terminus is dispensable and the pleckstrin homology domain of Lnk contributes to,but is not essential for,inhibiting Tpo-dependent 32D cell growth or megakaryocyte development. Thus,Lnk negatively modulates mpl signaling pathways and is important for Tpo-mediated megakaryocytopoiesis in vivo.
View Publication
Reference
Marwali MR et al. (SEP 2004)
Journal of immunology (Baltimore,Md. : 1950) 173 5 2960--7
Lipid rafts mediate association of LFA-1 and CD3 and formation of the immunological synapse of CTL.
Lipid rafts accumulate in the immunological synapse formed by an organized assembly of the TCR/CD3,LFA-1,and signaling molecules. However,the precise role of lipid rafts in the formation of the immunological synapse is unclear. In this study,we show that LFA-1 on CTL is constitutively active and mediates Ag-independent binding of CTL to target cells expressing its ligands. LFA-1 and CD3 on CTL,but not resting T cells,colocalize in lipid rafts. Binding of LFA-1 on CTL to targets initiates the formation of the immunological synapse,which is formed by LFA-1,CD3,and ganglioside GM1 distributed in the periphery of the cell contact site and cholesterol is more widely distributed. The formation of this synapse is Ag independent,but the recognition of Ag by the TCR induces accumulation of tyrosine phosphorylated proteins in the synapse as well as redistribution of the microtubule organization center toward the cell contact site. Our results suggest that LFA-1 recruits lipid rafts and the TCR/CD3 to the synapse,and facilitates efficient and rapid activation of CTL.
View Publication
Reference
Bishop MR et al. (OCT 2004)
Journal of clinical oncology : official journal of the American Society of Clinical Oncology 22 19 3886--92
Allogeneic lymphocytes induce tumor regression of advanced metastatic breast cancer.
PURPOSE: Allogeneic T lymphocytes can induce regression of metastatic breast cancer through an immune-mediated graft-versus-tumor (GVT) effect in murine models. To determine if a clinical GVT effect exists against metastatic breast cancer,allogeneic lymphocytes were used as adoptive cellular therapy after a reduced-intensity chemotherapy conditioning regimen and allogeneic hematopoietic stem-cell transplantation (HSCT) from human leukocyte antigen-matched siblings. PATIENTS AND METHODS: Sixteen patients with metastatic breast cancer that had progressed after treatment with anthracyclines,taxanes,hormonal agents,and trastuzumab,received allogeneic HSCT. The reduced-intensity transplant conditioning regimen consisted of cyclophosphamide and fludarabine. To distinguish an immunological GVT effect from any antitumor effect of cytotoxic chemotherapy in the transplant-conditioning regimen,allogeneic T lymphocytes were removed from the stem-cell graft and were subsequently administered late postallogeneic HSCT. Allogeneic lymphocytes containing 1 x 10(6),5 x 10(6),and 10 x 10(6) CD3(+) cells/kg were infused on days +42,+70,and +98 post-allogeneic HSCT,respectively. RESULTS: Objective tumor regressions occurred after day +28 post-allogeneic HSCT in six patients and were attributed to allogeneic lymphocyte infusions. Two of these responding patients had disease progression post-allogeneic HSCT before subsequent tumor regression. Tumor regressions occurred concomitantly with the establishment of complete donor T-lymphoid engraftment,were associated with the development of graft-versus-host disease (GVHD),and were abrogated by subsequent systemic immunosuppression for GVHD. CONCLUSION: Allogeneic lymphocytes can induce regression of advanced metastatic breast cancer. These results indicate that an immunological GVT effect from allogeneic lymphocytes exists against metastatic breast cancer and provide rationale for further development of allogeneic cellular therapy for this largely incurable disease.
View Publication
Reference
Yuki N et al. (AUG 2004)
Proceedings of the National Academy of Sciences 101 31 11404--09
Carbohydrate mimicry between human ganglioside GM1 and Campylobacter jejuni lipooligosaccharide causes Guillain-Barre syndrome
Molecular mimicry between microbial and self-components is postulated as the mechanism that accounts for the antigen and tissue specificity of immune responses in postinfectious autoimmune diseases. Little direct evidence exists,and research in this area has focused principally on T cell-mediated,antipeptide responses,rather than on humoral responses to carbohydrate structures. Guillain-Barré syndrome,the most frequent cause of acute neuromuscular paralysis,occurs 1-2 wk after various infections,in particular,Campylobacter jejuni enteritis. Carbohydrate mimicry [Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-] between the bacterial lipooligosaccharide and human GM1 ganglioside is seen as having relevance to the pathogenesis of Guillain-Barré syndrome,and conclusive evidence is reported here. On sensitization with C. jejuni lipooligosaccharide,rabbits developed anti-GM1 IgG antibody and flaccid limb weakness. Paralyzed rabbits had pathological changes in their peripheral nerves identical with those present in Guillain-Barré syndrome. Immunization of mice with the lipooligosaccharide generated a mAb that reacted with GM1 and bound to human peripheral nerves. The mAb and anti-GM1 IgG from patients with Guillain-Barré syndrome did not induce paralysis but blocked muscle action potentials in a muscle-spinal cord coculture,indicating that anti-GM1 antibody can cause muscle weakness. These findings show that carbohydrate mimicry is an important cause of autoimmune neuropathy.
View Publication
Reference
Wulff H et al. (JUL 2004)
Journal of immunology (Baltimore,Md. : 1950) 173 2 776--86
K+ channel expression during B cell differentiation: implications for immunomodulation and autoimmunity.
Using whole-cell patch-clamp,fluorescence microscopy and flow cytometry,we demonstrate a switch in potassium channel expression during differentiation of human B cells from naive to memory cells. Naive and IgD(+)CD27(+) memory B cells express small numbers of the voltage-gated Kv1.3 and the Ca(2+)-activated intermediate-conductance IKCa1 channel when quiescent,and increase IKCa1 expression 45-fold upon activation with no change in Kv1.3 levels. In contrast,quiescent class-switched memory B cells express high levels of Kv1.3 ( approximately 2000 channels/cell) and maintain their Kv1.3(high) expression after activation. Consistent with their channel phenotypes,proliferation of naive and IgD(+)CD27(+) memory B cells is suppressed by the specific IKCa1 inhibitor TRAM-34 but not by the potent Kv1.3 blocker Stichodactyla helianthus toxin,whereas the proliferation of class-switched memory B cells is suppressed by Stichodactyla helianthus toxin but not TRAM-34. These changes parallel those reported for T cells. Therefore,specific Kv1.3 and IKCa1 inhibitors may have use in therapeutic manipulation of selective lymphocyte subsets in immunological disorders.
View Publication
Reference
Frazer-Abel AA et al. (NOV 2004)
The Journal of pharmacology and experimental therapeutics 311 2 758--69
Nicotine activates nuclear factor of activated T cells c2 (NFATc2) and prevents cell cycle entry in T cells.
We used primary peripheral blood T cells,a population that exists in G(0) and can be stimulated to enter the cell cycle synchronously,to define more precisely the effects of nicotine on pathways that control cell cycle entry and progression. Our data show that nicotine decreased the ability of T cells to transit through the G(0)/G(1) boundary (acquire competence) and respond to progression signals. These effects were due to nuclear factor of activated T cells c2 (NFATc2)-dependent repression of cyclin-dependent kinase 4 (CDK4) expression. Growth arrest at the G(0)/G(1) boundary was further enforced by inhibition of cyclin D2 expression and by increased expression and stabilization of p27Kip1. Intriguingly,T cells from habitual users of tobacco products and from NFATc2-deficient mice constitutively expressed CDK4 and were resistant to the antiproliferative effects of nicotine. These results indicate that nicotine impairs T cell cycle entry through NFATc2-dependent mechanisms and suggest that,in the face of chronic nicotine exposure,selection may favor cells that can evade these effects. We postulate that cross talk between nicotinic acetylcholine receptors and growth factor receptor-activated pathways offers a novel mechanism by which nicotine may directly impinge on cell cycle progression. This offers insight into possible reasons that underlie the unique effects of nicotine on distinct cell types and identifies new targets that may be useful control tobacco-related diseases.
View Publication
Reference
Weller S et al. (DEC 2004)
Blood 104 12 3647--54
Human blood IgM memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire."
The human peripheral B-cell compartment displays a large population of immunoglobulin M-positive,immunoglobulin D-positive CD27(+) (IgM(+)IgD(+)CD27(+)) memory" B cells carrying a mutated immunoglobulin receptor. By means of phenotypic analysis�
View Publication
Reference
Schlecht G et al. (SEP 2004)
Blood 104 6 1808--15
Murine plasmacytoid dendritic cells induce effector/memory CD8+ T-cell responses in vivo after viral stimulation.
Like their human counterparts,mouse plasmacytoid dendritic cells (pDCs) play a central role in innate immunity against viral infections,but their capacity to prime T cells in vivo remains unknown. We show here that virus-activated pDCs differentiate into antigen-presenting cells able to induce effector/memory CD8(+) T-cell responses in vivo against both epitopic peptides and endogenous antigen,whereas pDCs activated by synthetic oligodeoxynucleotides containing unmethylated cytosine-guanine motifs (CpG) acquire only the ability to recall antigen-experienced T-cell responses. We also show that immature pDCs are unable to induce effector or regulatory CD8(+) T-cell responses. Thus,murine pDCs take part in both innate and adaptive immune responses by directly priming naive CD8(+) T cells during viral infection.
View Publication