Heinonen KM et al. (MAY 2004)
Blood 103 9 3457--64
T-cell protein tyrosine phosphatase deletion results in progressive systemic inflammatory disease.
The deregulation of the immune response is a critical component in inflammatory disease. Recent in vitro data show that T-cell protein tyrosine phosphatase (TC-PTP) is a negative regulator of cytokine signaling. Furthermore,tc-ptp(-/-) mice display immune defects and die within 5 weeks of birth. We report here that tc-ptp(-/-) mice develop progressive systemic inflammatory disease as shown by chronic myocarditis,gastritis,nephritis,and sialadenitis as well as elevated serum interferon-gamma. The widespread mononuclear cellular infiltrates correlate with exaggerated interferon-gamma,tumor necrosis factor-alpha,interleukin-12,and nitric oxide production in vivo. Macrophages grown from tc-ptp(-/-) mice are inherently hypersensitive to lipopolysaccharide,which can also be detected in vivo as an increased susceptibility to endotoxic shock. These results identify T-cell protein tyrosine phosphatase as a key modulator of inflammatory signals and macrophage function.
View Publication
Reference
Hideshima T et al. (DEC 2003)
Cancer research 63 23 8428--36
Antitumor activity of lysophosphatidic acid acyltransferase-beta inhibitors, a novel class of agents, in multiple myeloma.
In this study,we examined the effects of isoform-specific functional inhibitors of lysophosphatidic acid acyltransferase (LPAAT),which converts lysophosphatidic acid to phosphatidic acid,on multiple myeloma (MM) cell growth and survival. The LPAAT-beta inhibitors CT-32176,CT-32458,and CT-32615 induced textgreater95% growth inhibition (P textless 0.01) in MM.1S,U266,and RPMI8226 MM cell lines,as well as MM cells from patients (IC(50),50-200 nM). We further characterized this LPAAT-beta inhibitory effect using CT-32615,the most potent inhibitor of MM cell growth. CT-32615 triggered apoptosis in MM cells via caspase-8,caspase-3,caspase-7,and poly (ADP-ribose) polymerase cleavage. Neither interleukin 6 nor insulin-like growth factor I inhibited CT-32615-induced apoptosis. Dexamethasone and immunomodulatory derivatives of thalidomide (IMiDs),but not proteasome inhibitor PS-341,augmented MM cell apoptosis triggered by LPAAT-beta inhibitors. CT-32615-induced apoptosis was associated with phosphorylation of p53 and c-Jun NH(2)-terminal kinase (JNK); conversely,JNK inhibitor SP600125 and dominant-negative JNK inhibited CT-32615-induced apoptosis. Importantly,CT-32615 inhibited tumor necrosis factor-alpha-triggered nuclear factor-kappaB activation but did not affect either tumor necrosis factor-alpha-induced p38 mitogen-activated protein kinase phosphorylation or interleukin 6-triggered signal transducers and activators of transcription 3 phosphorylation. Finally,although binding of MM cells to bone marrow stromal cells augments MM cell growth and protects against dexamethasone-induced apoptosis,CT-32615 induced apoptosis even of adherent MM cells. Our data therefore demonstrate for the first time that inhibiting LPAAT-beta induces cytotoxicity in MM cells in the bone marrow milieu,providing the framework for clinical trials of these novel agents in MM.
View Publication
Reference
Chen W et al. (APR 2004)
Blood 103 7 2547--53
Thrombopoietin cooperates with FLT3-ligand in the generation of plasmacytoid dendritic cell precursors from human hematopoietic progenitors.
Type 1 interferon-producing cells (IPCs),also known as plasmacytoid dendritic cell (DC) precursors,represent the key effectors in antiviral innate immunity and triggers for adaptive immune responses. IPCs play important roles in the pathogenesis of systemic lupus erythematosus (SLE) and in modulating immune responses after hematopoietic stem cell transplantation. Understanding IPC development from hematopoietic progenitor cells (HPCs) may provide critical information in controlling viral infection,autoimmune SLE,and graft-versus-host disease. FLT3-ligand (FLT3-L) represents a key IPC differentiation factor from HPCs. Although hematopoietic cytokines such as interleukin-3 (IL-3),IL-7,stem cell factor (SCF),macrophage-colony-stimulating factor (M-CSF),and granulocyte M-CSF (GM-CSF) promote the expansion of CD34+ HPCs in FLT3-L culture,they strongly inhibit HPC differentiation into IPCs. Here we show that thrombopoietin (TPO) cooperates with FLT3-L,inducing CD34+ HPCs to undergo a 400-fold expansion in cell numbers and to generate more than 6 x 10(6) IPCs per 10(6) CD34+ HPCs within 30 days in culture. IPCs derived from HPCs in FLT3-L/TPO cultures display blood IPC phenotype and have the capacity to produce large amounts of interferon-alpha (IFN-alpha) and to differentiate into mature DCs. This culture system,combined with the use of adult peripheral blood CD34+ HPCs purified from G-CSF-mobilized donors,permits the generation of more than 10(9) IPCs from a single blood donor.
View Publication
Reference
Feeney ME et al. (DEC 2003)
Journal of immunology (Baltimore,Md. : 1950) 171 12 6968--75
Reconstitution of virus-specific CD4 proliferative responses in pediatric HIV-1 infection.
Gag-specific CD4 proliferative responses correlate inversely with HIV-1 RNA levels in infected adults,and robust responses are characteristic of long-term nonprogressive infection. However,strong responses are seldom detected in adult subjects with progressive infection and are not generally reconstituted on highly active antiretroviral therapy (HAART). To date,the role of HIV-1-specific Th responses in children has not been thoroughly examined. We characterized Gag-specific CD4 responses among 35 perinatally infected subjects,including 2 children who spontaneously control viremia without antiretroviral therapy,21 children with viral loads (VL) of textless400 on HAART,and 12 viremic children. Gag-specific Th activity was assessed by lymphoproliferative assay,and responses were mapped using overlapping Gag peptides in an IFN-gamma ELISPOT. Robust proliferative responses were detected in the children exhibiting spontaneous control of viremia,and mapping of targeted Gag regions in one such subject identified multiple epitopes. Among children textgreateror=5 years old,14 of 17 subjects with VL of textless400 on HAART demonstrated a significant p24 proliferative response (median p24 stimulation index,20),in contrast with only 1 of 9 viremic children (median p24 stimulation index,2.0; p = 0.0008). However,no subject younger than 5 years of age possessed a significant response,even when viremia was fully suppressed. When compared with adults with VL of textless400 on HAART,Th responses among children with VL of textless400 were both more frequent (p = 0.009) and of greater magnitude (p = 0.002). These data suggest that children may have a greater intrinsic capacity to reconstitute HIV-1-specific immunity than adults,and may be excellent candidates for immune-based therapies.
View Publication
Reference
Abdelwahab SF et al. (DEC 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 25 15006--10
HIV-1-suppressive factors are secreted by CD4+ T cells during primary immune responses.
CD4+ T cells are required for immunity against many viral infections,including HIV-1 where a positive correlation has been observed between strong recall responses and low HIV-1 viral loads. Some HIV-1-specific CD4+ T cells are preferentially infected with HIV-1,whereas others escape infection by unknown mechanisms. One possibility is that some CD4+ T cells are protected from infection by the secretion of soluble HIV-suppressive factors,although it is not known whether these factors are produced during primary antigen-specific responses. Here,we show that soluble suppressive factors are produced against CXCR4 and CCR5 isolates of HIV-1 during the primary immune response of human CD4+ T cells. This activity requires antigenic stimulation of naïve CD4+ T cells. One anti-CXCR4 factor is macrophage-derived chemokine (chemokine ligand 22,CCL22),and anti-CCR5 factors include macrophage inflammatory protein-1 alpha (CCL3),macrophage inflammatory protein-1 beta (CCL4),and RANTES (regulated upon activation of normal T cells expressed and secreted) (CCL5). Intracellular staining confirms that CD3+CD4+ T cells are the source of the prototype HIV-1-inhibiting chemokines CCL22 and CCL4. These results show that CD4+ T cells secrete an evolving HIV-1-suppressive activity during the primary immune response and that this activity is comprised primarily of CC chemokines. The data also suggest that production of such factors should be considered in the design of vaccines against HIV-1 and as a mechanism whereby the host can control infections with this virus.
View Publication
Reference
Trkola A et al. (DEC 2003)
Journal of virology 77 24 13146--55
Human immunodeficiency virus type 1 fitness is a determining factor in viral rebound and set point in chronic infection.
Human immunodeficiency virus type 1 (HIV-1) isolates from 20 chronically infected patients who participated in a structured treatment interruption (STI) trial were studied to determine whether viral fitness influences reestablishment of viremia. Viruses derived from individuals who spontaneously controlled viremia had significantly lower in vitro replication capacities than viruses derived from individuals that did not control viremia after interruption of antiretroviral therapy (ART),and replication capacities correlated with pre-ART and post-STI viral set points. Of note,no clinically relevant improvement of viral loads upon STI occurred. Virus isolates from controlling and noncontrolling patients were indistinguishable in terms of coreceptor usage,genetic subtype,and sensitivity to neutralizing antibodies. In contrast,viruses from controlling patients exhibited increased sensitivity to inhibition by chemokines. Sensitivity to inhibition by RANTES correlated strongly with slower replication kinetics of the virus isolates,suggesting a marked dependency of these virus isolates on high coreceptor densities on the target cells. In summary,our data indicate that viral fitness is a driving factor in determining the magnitude of viral rebound and viral set point in chronic HIV-1 infection,and thus fitness should be considered as a parameter influencing the outcome of therapeutic intervention in chronic infection.
View Publication
Reference
Wellington M et al. (DEC 2003)
Infection and immunity 71 12 7228--31
Enhanced phagocytosis of Candida species mediated by opsonization with a recombinant human antibody single-chain variable fragment.
Specific antibody opsonization significantly enhances the level of phagocytosis of Candida in the absence of complement. Furthermore,we have described a system using a recombinant human antibody single-chain variable fragment that allows a comparative study of phagocytosis of multiple Candida species opsonized via a common antigen.
View Publication
Reference
Deonarain R et al. (NOV 2003)
Proceedings of the National Academy of Sciences of the United States of America 100 23 13453--8
Critical roles for IFN-beta in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor alpha.
We have generated mice null for IFN-beta and report the diverse consequences of IFN-beta for both the innate and adaptive arms of immunity. Despite no abnormalities in the proportional balance of CD4 and CD8 T cell populations in the peripheral blood,thymus,and spleen of IFN-beta-/- mice,activated lymph node and splenic T lymphocytes exhibit enhanced T cell proliferation and decreased tumor necrosis factor alpha production,relative to IFN-beta+/+ mice. Notably,constitutive and induced expression of tumor necrosis factor alpha is reduced in the spleen and bone marrow (BM) macrophages,respectively,of IFN-beta-/- mice. We also observe an altered splenic architecture in IFN-beta-/- mice and a reduction in resident macrophages. We identify a potential defect in B cell maturation in IFN-beta-/- mice,associated with a decrease in B220+ve/high/CD43-ve BM-derived cells and a reduction in BP-1,IgM,and CD23 expression. Circulating IgM-,Mac-1-,and Gr-1-positive cells are also substantially decreased in IFN-beta-/- mice. The decrease in the numbers of circulating macrophages and granulocytes likely reflects defective maturation of primitive BM hematopoiesis in mice,shown by the reduction of colony-forming units,granulocyte-macrophage. We proceeded to evaluate the in vivo growth of malignant cells in the IFN-beta-/- background and give evidence that Lewis lung carcinoma-specific tumor growth is more aggressive in IFN-beta-/- mice. Taken altogether,our data suggest that,in addition to the direct growth-inhibitory effects on tumor cells,IFN-beta is required during different stages of maturation in the development of the immune system.
View Publication
Reference
Lim Y-P et al. (SEP 2003)
The Journal of infectious diseases 188 6 919--26
Correlation between mortality and the levels of inter-alpha inhibitors in the plasma of patients with severe sepsis.
Inter-alpha inhibitor protein (IalphaIp) is an endogenous serine protease inhibitor in human plasma. Circulating IalphaIp levels were lower in 51 patients with severe sepsis than in healthy volunteers. Mean levels were 688+/-295 mg/L in patients with severe sepsis who survived (n=32),486+/-193 mg/L in patients with sepsis who died (n=19),and 872+/-234 mg/L in control subjects (n=25). IalphaIp levels were lower in patients with shock versus those without (540+/-246 [n=33] vs. 746+/-290 [n=18] mg/L; P=.0102). IalphaIp levels were inversely correlated with 28-day mortality rates and Acute Physiology and Chronic Health Evaluation II scores and directly correlated with antithrombin III,protein C,and protein S levels. The administration of IalphaIp (30 mg/kg body weight intravenously) increased the 50% lethal dose in mice by 100-fold after an intravenous challenge of Escherichia coli. Thus,human IalphaIp may be a useful predictive marker and potential therapeutic agent in sepsis.
View Publication
Reference
Rabin RL et al. (SEP 2003)
Journal of immunology (Baltimore,Md. : 1950) 171 6 2812--24
CXCR3 is induced early on the pathway of CD4+ T cell differentiation and bridges central and peripheral functions.
Chemokine receptors on T cells are frequently categorized as functioning either in immune system homeostasis within lymphoid organs,or in peripheral inflammation. CXCR3 is in the latter category and is reported to be expressed selectively on Th1 cells. We found that CXCR3 was expressed in vivo on newly activated tonsillar CD4(+) T cells. Using CD4(+) T cells from cord blood,we found that CXCR3 was induced by cellular activation in vitro independently of the cytokine milieu,although on resting cells,expression was maintained preferentially on those that had been activated in type 1 conditions. In inflamed tonsils,CXCR3(+)CD4(+) T cells were localized around and within germinal centers. The inference that CXCR3 has a role in germinal center reactions was supported by the finding that the CXCR3 ligand CXC chemokine ligand 9 was expressed in a pattern demarcating a subset of germinal centers both in tonsil and in lymph nodes from an HIV-infected individual. We next investigated the role of CXCR3 on peripheral effector/memory CD4(+) T cells by comparing its pattern of expression with that of CCR5,another Th1-cell associated chemokine receptor. Analysis of cells directly from peripheral blood and after activation in vitro suggested that CXCR3 expression preceded that of CCR5,supporting a model of sequential induction of chemokine receptors during CD4(+) T cell differentiation. Taken together,our data show that CXCR3 can be expressed at all stages of CD4(+) T cell activation and differentiation,bridging central function in lymphoid organs and effector function in peripheral tissues.
View Publication
Reference
Goodridge JP et al. (AUG 2003)
Journal of immunology (Baltimore,Md. : 1950) 171 4 1768--74
KIR2DL4 (CD158d) genotype influences expression and function in NK cells.
The expression and function of the NK cell receptor KIR2DL4 are controversial. Two common alleles of the transmembrane domain of KIR2DL4 exist. The 10A allele with 10 adenines at the end of the transmembrane exon encodes a full length receptor,whereas the 9A allele has only 9 adenines resulting in a frame shift which in turn generates a stop codon early in the first cytoplasmic exon. The possibility that the 10A and 9A alleles might result in differences in expression and function of KIR2DL4 was explored using mAbs to KIR2DL4. Transfection experiments with cDNA from the 10A and 9A alleles revealed significant membrane expression only with the protein encoded by the 10A allele. Analysis of peripheral blood NK cells demonstrated that only in subjects with at least one 10A allele was cell surface expression of KIR2DL4 detectable,and then only on the minor CD56(bright) NK cell subset. The major CD56(dim) NK cell subset did not cell surface express KIR2DL4 but,interestingly,did so after in vitro culture. Functional analysis using cultured NK cells in redirected lysis assays demonstrated that KIR2DL4 is an activating receptor for NK cells with at least one 10A allele. No significant activity was detected for NK cells generated from subjects homozygous for the 9A allele. These data show that genotype influences cell surface expression and function of KIR2DL4 which may account for reported differences in KIR2DL4 expression and function.
View Publication
Reference
Jones DC et al. (JUL 2003)
Journal of immunology 171 1 196--203
Peroxisome proliferator-activated receptor alpha negatively regulates T-bet transcription through suppression of p38 mitogen-activated protein kinase activation.
Expression of the nuclear hormone receptor peroxisome proliferator-activated receptor alpha (PPARalpha) in resting lymphocytes was recently established,although the physiologic role(s) played by this nuclear hormone receptor in these cell types remains unresolved. In this study,we used CD4(+) T cells isolated from PPARalpha(-/-) and wild-type mice,as well as cell lines that constitutively express PPARalpha,in experiments designed to evaluate the role of this hormone receptor in the regulation of T cell function. We report that activated CD4(+) T cells lacking PPARalpha produce increased levels of IFN-gamma,but significantly lower levels of IL-2 when compared with activated wild-type CD4(+) T cells. Furthermore,we demonstrate that PPARalpha regulates the expression of these cytokines by CD4(+) T cells in part,through its ability to negatively regulate the transcription of T-bet. The induction of T-bet expression in CD4(+) T cells was determined to be positively influenced by p38 mitogen-activated protein (MAP) kinase activation,and the presence of unliganded PPARalpha effectively suppressed the phosphorylation of p38 MAP kinase. The activation of PPARalpha with highly specific ligands relaxed its capacity to suppress p38 MAP kinase phosphorylation and promoted T-bet expression. These results demonstrate a novel DNA-binding independent and agonist-controlled regulatory influence by the nuclear hormone receptor PPARalpha.
View Publication