Gu Q et al. (JUN 2014)
Toxicology in Vitro 28 4 469--472
In vitro detection of cytotoxicity using FluoroJade-C
We describe here a novel method for the determination of cytotoxicity in cell cultures using Fluoro-Jade C (FJ-C). FJ-C has been previously used for the assessment of neurodegeneration in fixed brain tissue samples,and has never been utilized in live cell cultures or in different types of cells other than neurons. In the present study we examined the utility of FJ-C for the determination of cytotoxicity in vitro. Various cell cultures were evaluated including neural stem cells,brain microvessel endothelial cells,and SH-SY5Y,PC12 and MDCK cells. Cytotoxicities induced by toxicants in cell cultures,as determined by the FJ-C labeling,were further confirmed by commonly used cytotoxicity assays. This in vitro approach is simple,fast,and sensitive and,thus,has the potential to augment if not replace currently used cell-based cytotoxicity assays.
View Publication
文献
Green AL et al. (MAY 2015)
Neuro-oncology 17 5 697--707
Preclinical antitumor efficacy of selective exportin 1 inhibitors in glioblastoma.
BACKGROUND Glioblastoma (GBM) is poorly responsive to current chemotherapy. The nuclear transporter exportin 1 (XPO1,CRM1) is often highly expressed in GBM,which may portend a poor prognosis. Here,we determine the efficacy of novel selective inhibitors of nuclear export (SINE) specific to XPO1 in preclinical models of GBM. METHODS Seven patient-derived GBM lines were treated with 3 SINE compounds (KPT-251,KPT-276,and Selinexor) in neurosphere culture conditions. KPT-276 and Selinexor were also evaluated in a murine orthotopic patient-derived xenograft (PDX) model of GBM. Cell cycle effects were assayed by flow cytometry in vitro and immunohistochemistry in vivo. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and caspase 3/7 activity assays. RESULTS Treatment of GBM neurosphere cultures with KPT-276,Selinexor,and KPT-251 revealed dose-responsive growth inhibition in all 7 GBM lines [range of half-maximal inhibitory concentration (IC50),6-354 nM]. In an orthotopic PDX model,treatment with KPT-276 and Selinexor demonstrated pharmacodynamic efficacy,significantly suppressed tumor growth,and prolonged animal survival. Cellular proliferation was not altered with SINE treatment. Instead,induction of apoptosis was apparent both in vitro and in vivo with SINE treatment,without overt evidence of neurotoxicity. CONCLUSIONS SINE compounds show preclinical efficacy utilizing in vitro and in vivo models of GBM,with induction of apoptosis as the mechanism of action. Selinexor is now in early clinical trials in solid and hematological malignancies. Based on these preclinical data and excellent brain penetration,we have initiated clinical trials of Selinexor in patients with relapsed GBM.
View Publication
文献
Goldstein BJ et al. (DEC 2016)
Development 143 23 4394--4404
Contribution of Polycomb group proteins to olfactory basal stem cell self-renewal in a novel c-KIT+ culture model and in vivo.
Olfactory epithelium (OE) has a lifelong capacity for neurogenesis due to the presence of basal stem cells. Despite the ability to generate short-term cultures,the successful in vitro expansion of purified stem cells from adult OE has not been reported. We sought to establish expansion-competent OE stem cell cultures to facilitate further study of the mechanisms and cell populations important in OE renewal. Successful cultures were prepared using adult mouse basal cells selected for expression of c-KIT. We show that c-KIT signaling regulates self-renewal capacity and prevents neurodifferentiation in culture. Inhibition of TGFβ family signaling,a known negative regulator of embryonic basal cells,is also necessary for maintenance of the proliferative,undifferentiated state in vitro Characterizing successful cultures,we identified expression of BMI1 and other Polycomb proteins not previously identified in olfactory basal cells but known to be essential for self-renewal in other stem cell populations. Inducible fate mapping demonstrates that BMI1 is expressed in vivo by multipotent OE progenitors,validating our culture model. These findings provide mechanistic insights into the renewal and potency of olfactory stem cells.
View Publication
文献
Ghosh D et al. ( 2016)
Stem cells (Dayton,Ohio) 34 9 2276--89
TGFβ-Responsive HMOX1 Expression Is Associated with Stemness and Invasion in Glioblastoma Multiforme.
Glioblastoma multiforme (GBM) is the most common and lethal adult brain tumor. Resistance to standard radiation and chemotherapy is thought to involve survival of GBM cancer stem cells (CSCs). To date,no single marker for identifying GBM CSCs has been able to capture the diversity of CSC populations,justifying the needs for additional CSC markers for better characterization. Employing targeted mass spectrometry,here we present five cell-surface markers HMOX1,SLC16A1,CADM1,SCAMP3,and CLCC1 which were found to be elevated in CSCs relative to healthy neural stem cells (NSCs). Transcriptomic analyses of REMBRANDT and TCGA compendiums also indicated elevated expression of these markers in GBM relative to controls and non-GBM diseases. Two markers SLC16A1 and HMOX1 were found to be expressed among pseudopalisading cells that reside in the hypoxic region of GBM,substantiating the histopathological hallmarks of GBM. In a prospective study (N%=%8) we confirmed the surface expression of HMOX1 on freshly isolated primary GBM cells (P0). Employing functional assays that are known to evaluate stemness,we demonstrate that elevated HMOX1 expression is associated with stemness in GBM and can be modulated through TGFβ. siRNA-mediated silencing of HMOX1 impaired GBM invasion-a phenomenon related to poor prognosis. In addition,surgical resection of GBM tumors caused declines (18%%±%5.1SEM) in the level of plasma HMOX1 as measured by ELISA,in 8/10 GBM patients. These findings indicate that HMOX1 is a robust predictor of GBM CSC stemness and pathogenesis. Further understanding of the role of HMOX1 in GBM may uncover novel therapeutic approaches. Stem Cells 2016;34:2276-2289.
View Publication
文献
Gao C et al. (APR 2015)
Neurochemical Research 40 4 818--828
MCT4-Mediated Expression of EAAT1 is Involved in the Resistance to Hypoxia Injury in AstrocyteNeuron co-Cultures
Hypoxic stressors contribute to neuronal death in many brain diseases. Astrocyte processes surround most neurons and are therefore anatomically well-positioned to shield them from hypoxic injury. Excitatory amino acid transporters (EAATs),represent the sole mechanism of active reuptake of glutamate into the astrocytes and neurons and are essential to dampen neuronal excitation following glutamate release at synapses. Glutamate clearance impairment from any factors is bound to result in an increase in hypoxic neuronal injury. The brain energy metabolism under hypoxic conditions depends on monocarboxylate transporters (MCTs) that are expressed by neurons and glia. Previous co-immunoprecipitation experiments revealed that MCT4 directly modulate EAAT1 in astrocytes. The reduction in both surface proteins may act synergistically to induce neuronal hyperexcitability and excitotoxicity. Therefore we hypothesized that astrocytes would respond to hypoxic conditions by enhancing their expression of MCT4 and EAAT1,which,in turn,would enable them to better support neurons to survive lethal hypoxia injury. An oxygen deprivation (OD) protocol was used in primary cultures of neurons,astrocytes,and astrocytes-neurons derived from rat hippocampus,with or without MCT4-targeted short hairpin RNA (shRNA) transfection. Cell survival,expression of MCT4,EAAT1,glial fibrillary acidic protein and neuronal nuclear antigen were evaluated. OD resulted in significant cell death in neuronal cultures and up-regulation of MCT4,EAAT1 expression respectively in primary cell cultures,but no injury in neuron-astrocyte co-cultures and astrocyte cultures. However,neuronal cell death in co-cultures was increased exposure to shRNA-MCT4 prior to OD. These findings demonstrate that the MCT4-mediated expression of EAAT1 is involved in the resistance to hypoxia injury in astrocyte-neuron co-cultures.
View Publication
文献
Gabriel E et al. (APR 2016)
The EMBO Journal 35 8 803--819
CPAP promotes timely cilium disassembly to maintain neural progenitor pool
A mutation in the centrosomal-P4.1-associated protein (CPAP) causes Seckel syndrome with microcephaly,which is suggested to arise from a decline in neural progenitor cells (NPCs) during development. However,mechanisms ofNPCs maintenance remain unclear. Here,we report an unexpected role for the cilium inNPCs maintenance and identifyCPAPas a negative regulator of ciliary length independent of its role in centrosome biogenesis. At the onset of cilium disassembly,CPAPprovides a scaffold for the cilium disassembly complex (CDC),which includes Nde1,Aurora A,andOFD1,recruited to the ciliary base for timely cilium disassembly. In contrast,mutatedCPAPfails to localize at the ciliary base associated with inefficientCDCrecruitment,long cilia,retarded cilium disassembly,and delayed cell cycle re-entry leading to premature differentiation of patientiPS-derivedNPCs. AberrantCDCfunction also promotes premature differentiation ofNPCs in SeckeliPS-derived organoids. Thus,our results suggest a role for cilia in microcephaly and its involvement during neurogenesis and brain size control.
View Publication
文献
Friedmann-Morvinski D et al. (JAN 2016)
Science advances 2 1 e1501292
Targeting NF-κB in glioblastoma: A therapeutic approach.
Glioblastoma multiforme (GBM) is the most common and lethal form of intracranial tumor. We have established a lentivirus-induced mouse model of malignant gliomas,which faithfully captures the pathophysiology and molecular signature of mesenchymal human GBM. RNA-Seq analysis of these tumors revealed high nuclear factor κB (NF-κB) activation showing enrichment of known NF-κB target genes. Inhibition of NF-κB by either depletion of IκB kinase 2 (IKK2),expression of a IκBαM super repressor,or using a NEMO (NF-κB essential modifier)-binding domain (NBD) peptide in tumor-derived cell lines attenuated tumor proliferation and prolonged mouse survival. Timp1,one of the NF-κB target genes significantly up-regulated in GBM,was identified to play a role in tumor proliferation and growth. Inhibition of NF-κB activity or silencing of Timp1 resulted in slower tumor growth in both mouse and human GBM models. Our results suggest that inhibition of NF-κB activity or targeting of inducible NF-κB genes is an attractive therapeutic approach for GBM.
View Publication
文献
Fortin JM et al. (MAR 2016)
Scientific Reports 2016 6 6 23579
Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny
Transplantation of Defined Populations of Differentiated Human Neural Stem Cell Progeny
View Publication
文献
Fornara O et al. (FEB 2016)
Cell death and differentiation 23 2 261--9
Cytomegalovirus infection induces a stem cell phenotype in human primary glioblastoma cells: prognostic significance and biological impact.
Glioblastoma (GBM) is associated with poor prognosis despite aggressive surgical resection,chemotherapy,and radiation therapy. Unfortunately,this standard therapy does not target glioma cancer stem cells (GCSCs),a subpopulation of GBM cells that can give rise to recurrent tumors. GBMs express human cytomegalovirus (HCMV) proteins,and previously we found that the level of expression of HCMV immediate-early (IE) protein in GBMs is a prognostic factor for poor patient survival. In this study,we investigated the relation between HCMV infection of GBM cells and the presence of GCSCs. Primary GBMs were characterized by their expression of HCMV-IE and GCSCs marker CD133 and by patient survival. The extent to which HCMV infection of primary GBM cells induced a GCSC phenotype was evaluated in vitro. In primary GBMs,a large fraction of CD133-positive cells expressed HCMV-IE,and higher co-expression of these two proteins predicted poor patient survival. Infection of GBM cells with HCMV led to upregulation of CD133 and other GSCS markers (Notch1,Sox2,Oct4,Nestin). HCMV infection also promoted the growth of GBM cells as neurospheres,a behavior typically displayed by GCSCs,and this phenotype was prevented by either chemical inhibition of the Notch1 pathway or by treatment with the anti-viral drug ganciclovir. GBM cells that maintained expression of HCMV-IE failed to differentiate into neuronal or astrocytic phenotypes. Our findings imply that HCMV infection induces phenotypic plasticity of GBM cells to promote GCSC features and may thereby increase the aggressiveness of this tumor.
View Publication
文献
Fè et al. ( 2014)
PloS one 9 3 e91519
Comparative expression study of the endo-G protein coupled receptor (GPCR) repertoire in human glioblastoma cancer stem-like cells, U87-MG cells and non malignant cells of neural origin unveils new potential therapeutic targets.
Glioblastomas (GBMs) are highly aggressive,invasive brain tumors with bad prognosis and unmet medical need. These tumors are heterogeneous being constituted by a variety of cells in different states of differentiation. Among these,cells endowed with stem properties,tumor initiating/propagating properties and particularly resistant to chemo- and radiotherapies are designed as the real culprits for tumor maintenance and relapse after treatment. These cells,termed cancer stem-like cells,have been designed as prominent targets for new and more efficient cancer therapies. G-protein coupled receptors (GPCRs),a family of membrane receptors,play a prominent role in cell signaling,cell communication and crosstalk with the microenvironment. Their role in cancer has been highlighted but remains largely unexplored. Here,we report a descriptive study of the differential expression of the endo-GPCR repertoire in human glioblastoma cancer stem-like cells (GSCs),U-87 MG cells,human astrocytes and fetal neural stem cells (f-NSCs). The endo-GPCR transcriptome has been studied using Taqman Low Density Arrays. Of the 356 GPCRs investigated,138 were retained for comparative studies between the different cell types. At the transcriptomic level,eight GPCRs were specifically expressed/overexpressed in GSCs. Seventeen GPCRs appeared specifically expressed in cells with stem properties (GSCs and f-NSCs). Results of GPCR expression at the protein level using mass spectrometry and proteomic analysis are also presented. The comparative GPCR expression study presented here gives clues for new pathways specifically used by GSCs and unveils novel potential therapeutic targets.
View Publication
文献
Ferreira JS et al. (JUN 2015)
The Journal of neuroscience : the official journal of the Society for Neuroscience 35 22 8462--79
GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.
NMDA receptors play a central role in shaping the strength of synaptic connections throughout development and in mediating synaptic plasticity mechanisms that underlie some forms of learning and memory formation in the CNS. In the hippocampus and the neocortex,GluN1 is combined primarily with GluN2A and GluN2B,which are differentially expressed during development and confer distinct molecular and physiological properties to NMDA receptors. The contribution of each subunit to the synaptic traffic of NMDA receptors and therefore to their role during development and in synaptic plasticity is still controversial. We report a critical role for the GluN2B subunit in regulating NMDA receptor synaptic targeting. In the absence of GluN2B,the synaptic levels of AMPA receptors are increased and accompanied by decreased constitutive endocytosis of GluA1-AMPA receptor. We used quantitative proteomic analysis to identify changes in the composition of postsynaptic densities from GluN2B(-/-) mouse primary neuronal cultures and found altered levels of several ubiquitin proteasome system components,in particular decreased levels of proteasome subunits. Enhancing the proteasome activity with a novel proteasome activator restored the synaptic levels of AMPA receptors in GluN2B(-/-) neurons and their endocytosis,revealing that GluN2B-mediated anchoring of the synaptic proteasome is responsible for fine tuning AMPA receptor synaptic levels under basal conditions.
View Publication
文献
Fernandes J et al. ( 2014)
PloS one 9 6 e99958
In vitro ischemia triggers a transcriptional response to down-regulate synaptic proteins in hippocampal neurons.
Transient global cerebral ischemia induces profound changes in the transcriptome of brain cells,which is partially associated with the induction or repression of genes that influence the ischemic response. However,the mechanisms responsible for the selective vulnerability of hippocampal neurons to global ischemia remain to be clarified. To identify molecular changes elicited by ischemic insults,we subjected hippocampal primary cultures to oxygen-glucose deprivation (OGD),an in vitro model for global ischemia that resulted in delayed neuronal death with an excitotoxic component. To investigate changes in the transcriptome of hippocampal neurons submitted to OGD,total RNA was extracted at early (7 h) and delayed (24 h) time points after OGD and used in a whole-genome RNA microarray. We observed that at 7 h after OGD there was a general repression of genes,whereas at 24 h there was a general induction of gene expression. Genes related with functions such as transcription and RNA biosynthesis were highly regulated at both periods of incubation after OGD,confirming that the response to ischemia is a dynamic and coordinated process. Our analysis showed that genes for synaptic proteins,such as those encoding for PICK1,GRIP1,TARPγ3,calsyntenin-2/3,SAPAP2 and SNAP-25,were down-regulated after OGD. Additionally,OGD decreased the mRNA and protein expression levels of the GluA1 AMPA receptor subunit as well as the GluN2A and GluN2B subunits of NMDA receptors,but increased the mRNA expression of the GluN3A subunit,thus altering the composition of ionotropic glutamate receptors in hippocampal neurons. Together,our results present the expression profile elicited by in vitro ischemia in hippocampal neurons,and indicate that OGD activates a transcriptional program leading to down-regulation in the expression of genes coding for synaptic proteins,suggesting that the synaptic proteome may change after ischemia.
View Publication