Alessandrini F et al. ( 2016)
Journal of Cancer 7 13 1791--1797
Noninvasive Monitoring of Glioma Growth in the Mouse.
Malignant gliomas are the most common and deadly primary malignant brain tumors. In vivo orthotopic models could doubtless represent an appropriate tool to test novel treatment for gliomas. However,methods commonly used to monitor the growth of glioma inside the mouse brain are time consuming and invasive. We tested the reliability of a minimally invasive procedure,based on a secreted luciferase (Gaussia luciferase),to frequently monitor the changes of glioma size. Gluc activity was evaluated from blood samples collected from the tail tip of mice twice a week,allowing to make a growth curve for the tumors. We validated the correlation between Gluc activity and tumor size by analysing the tumor after brain dissection. We found that this method is reliable for monitoring human glioma transplanted in immunodeficient mice,but it has strong limitation in immunocompetent models,where an immune response against the luciferase is developed during the first weeks after transplant.
View Publication
文献
Zhu TS et al. (SEP 2011)
Cancer research 71 18 6061--72
Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells.
One important function of endothelial cells in glioblastoma multiforme (GBM) is to create a niche that helps promote self-renewal of cancer stem-like cells (CSLC). However,the underlying molecular mechanism for this endothelial function is not known. Since activation of NOTCH signaling has been found to be required for propagation of GBM CSLCs,we hypothesized that the GBM endothelium may provide the source of NOTCH ligands. Here,we report a corroboration of this concept with a demonstration that NOTCH ligands are expressed in endothelial cells adjacent to NESTIN and NOTCH receptor-positive cancer cells in primary GBMs. Coculturing human brain microvascular endothelial cells (hBMEC) or NOTCH ligand with GBM neurospheres promoted GBM cell growth and increased CSLC self-renewal. Notably,RNAi-mediated knockdown of NOTCH ligands in hBMECs abrogated their ability to induce CSLC self-renewal and GBM tumor growth,both in vitro and in vivo. Thus,our findings establish that NOTCH activation in GBM CSLCs is driven by juxtacrine signaling between tumor cells and their surrounding endothelial cells in the tumor microenvironment,suggesting that targeting both CSLCs and their niche may provide a novel strategy to deplete CSLCs and improve GBM treatment.
View Publication
文献
Zhou Q et al. (FEB 2016)
Molecular biology of the cell 27 4 627--39
Inhibition of the histone demethylase Kdm5b promotes neurogenesis and derepresses Reln (reelin) in neural stem cells from the adult subventricular zone of mice.
The role of epigenetic regulators in the control of adult neurogenesis is largely undefined. We show that the histone demethylase enzyme Kdm5b (Jarid1b) negatively regulates neurogenesis from adult subventricular zone (SVZ) neural stem cells (NSCs) in culture. shRNA-mediated depletion of Kdm5b in proliferating adult NSCs decreased proliferation rates and reduced neurosphere formation in culture. When transferred to differentiation culture conditions,Kdm5b-depleted adult NSCs migrated from neurospheres with increased velocity. Whole-genome expression screening revealed widespread transcriptional changes with Kdm5b depletion,notably the up-regulation of reelin (Reln),the inhibition of steroid biosynthetic pathway component genes and the activation of genes with intracellular transport functions in cultured adult NSCs. Kdm5b depletion increased extracellular reelin concentration in the culture medium and increased phosphorylation of the downstream reelin signaling target Disabled-1 (Dab1). Sequestration of extracellular reelin with CR-50 reelin-blocking antibodies suppressed the increase in migratory velocity of Kdm5b-depleted adult NSCs. Chromatin immunoprecipitation revealed that Kdm5b is present at the proximal promoter of Reln,and H3K4me3 methylation was increased at this locus with Kdm5b depletion in differentiating adult NSCs. Combined the data suggest Kdm5b negatively regulates neurogenesis and represses Reln in neural stem cells from the adult SVZ.
View Publication
文献
Zhou P et al. (MAY 2016)
Biomaterials 87 1--17
Simple and versatile synthetic polydopamine-based surface supports reprogramming of human somatic cells and long-term self-renewal of human pluripotent stem cells under defined conditions
Human pluripotent stem cells (hPSCs) possess great value in the aspect of cellular therapies due to its self-renewal and potential to differentiate into all somatic cell types. A few defined synthetic surfaces such as polymers and adhesive biological materials conjugated substrata were established for the self-renewal of hPSCs. However,none of them was effective in the generation of human induced pluripotent stem cells (hiPSCs) and long-term maintenance of multiple hPSCs,and most of them required complicated manufacturing processes. Polydopamine has good biocompatibility,is able to form a stable film on nearly all solid substrates surface,and can immobilize adhesive biomolecules. In this manuscript,a polydopamine-mediated surface was developed,which not only supported the reprogramming of human somatic cells into hiPSCs under defined conditions,but also sustained the growth of hiPSCs on diverse substrates. Moreover,the proliferation and pluripotency of hPSCs cultured on the surface were comparable to Matrigel for more than 20 passages. Besides,hPSCs were able to differentiate to cardiomyocytes and neural cells on the surface. This polydopamine-based synthetic surface represents a chemically-defined surface extensively applicable both for fundamental research and cell therapies of hPSCs.
View Publication
文献
Zhou F-W et al. ( 2015)
PloS one 10 3 e0120281
Functional integration of human neural precursor cells in mouse cortex.
This study investigates the electrophysiological properties and functional integration of different phenotypes of transplanted human neural precursor cells (hNPCs) in immunodeficient NSG mice. Postnatal day 2 mice received unilateral injections of 100,000 GFP+ hNPCs into the right parietal cortex. Eight weeks after transplantation,1.21% of transplanted hNPCs survived. In these hNPCs,parvalbumin (PV)-,calretinin (CR)-,somatostatin (SS)-positive inhibitory interneurons and excitatory pyramidal neurons were confirmed electrophysiologically and histologically. All GFP+ hNPCs were immunoreactive with anti-human specific nuclear protein. The proportions of PV-,CR-,and SS-positive cells among GFP+ cells were 35.5%,15.7%,and 17.1%,respectively; around 15% of GFP+ cells were identified as pyramidal neurons. Those electrophysiologically and histological identified GFP+ hNPCs were shown to fire action potentials with the appropriate firing patterns for different classes of neurons and to display spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs). The amplitude,frequency and kinetic properties of sEPSCs and sIPSCs in different types of hNPCs were comparable to host cells of the same type. In conclusion,GFP+ hNPCs produce neurons that are competent to integrate functionally into host neocortical neuronal networks. This provides promising data on the potential for hNPCs to serve as therapeutic agents in neurological diseases with abnormal neuronal circuitry such as epilepsy.
View Publication
文献
Zhou C et al. (APR 2015)
The Journal of clinical investigation 125 4 1692--702
STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion.
Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however,regulatory mechanisms that promote GH hypersecretion remain elusive. Here,we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover,STAT3 and GH expression were concordant in a somatotroph adenoma tissue array. Promoter and expression analysis in a GH-secreting rat cell line (GH3) revealed that STAT3 specifically binds the Gh promoter and induces transcription. Stable expression of STAT3 in GH3 cells induced expression of endogenous GH,and expression of a constitutively active STAT3 further enhanced GH production. Conversely,expression of dominant-negative STAT3 abrogated GH expression. In primary human somatotroph adenoma-derived cell cultures,STAT3 suppression with the specific inhibitor S3I-201 attenuated GH transcription and reduced GH secretion in the majority of derivative cultures. In addition,S3I-201 attenuated somatotroph tumor growth and GH secretion in a rat xenograft model. GH induced STAT3 phosphorylation and nuclear translocation,indicating a positive feedback loop between STAT3 and GH in somatotroph tumor cells. Together,these results indicate that adenoma GH hypersecretion is the result of STAT3-dependent GH induction,which in turn promotes STAT3 expression,and suggest STAT3 as a potential therapeutic target for pituitary somatotroph adenomas.
View Publication
文献
Zhou et al. ( 2013)
Neural Regeneration Research 8 16 1455
Novel nanometer scaffolds regulate the biological behaviors of neural stem cells
Abstract
Ideal tissue-engineered scaffold materials regulate proliferation,apoptosis and differentiation of cells seeded on them by regulating gene expression. In this study,aligned and randomly oriented collagen nanofiber scaffolds were prepared using electronic spinning technology. Their diameters and appearance reached the standards of tissue-engineered nanometer scaffolds. The nanofiber scaffolds were characterized by a high swelling ratio,high porosity and good mechanical properties. The proliferation of spinal cord-derived neural stem cells on novel nanofiber scaffolds was obviously enhanced. The proportions of cells in the S and G2/M phases noticeably increased. Moreover,the proliferation rate of neural stem cells on the aligned collagen nanofiber scaffolds was high. The expression levels of cyclin D1 and cyclin-dependent kinase 2 were increased. Bcl-2 expression was significantly increased,but Bax and caspase-3 gene expressions were obviously decreased. There was no significant difference in the differentiation of neural stem cells into neurons on aligned and randomly oriented collagen nanofiber scaffolds. These results indicate that novel nanofiber scaffolds could promote the proliferation of spinal cord-derived neural stem cells and inhibit apoptosis without inducing differentiation. Nanofiber scaffolds regulate apoptosis and proliferation in neural stem cells by altering gene expression.
Research Highlights
(1) Electronic spinning technology was used to obtain randomly oriented nanofiber membranes and aligned nanofiber membranes. The aligned and randomly oriented collagen nanometer scaffolds were shown to alter the biological behaviors of neural stem cells and induce changes in gene expression.
(2) The effects of the aligned nanofiber membranes on promoting neural stem cell proliferation and on inhibiting apoptosis of neural stem cells were better than those of the randomly oriented nanofiber membranes. Aligned and randomly oriented collagen nanometer scaffolds did not significantly induce apoptosis or differentiation in stem cells.
(3) Aligned and randomly oriented collagen nanometer scaffolds regulated the expression of apoptosis and cell cycle genes in neural stem cells.
Zhang Y et al. (APR 2015)
Oncotarget 6 12 9999--10015
Aspirin counteracts cancer stem cell features, desmoplasia and gemcitabine resistance in pancreatic cancer.
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis. An inflammatory microenvironment triggers the pronounced desmoplasia,the selection of cancer stem-like cells (CSCs) and therapy resistance. The anti-inflammatory drug aspirin is suggested to lower the risk for PDA and to improve the treatment,although available results are conflicting and the effect of aspirin to CSC characteristics and desmoplasia in PDA has not yet been investigated. We characterized the influence of aspirin on CSC features,stromal reactions and gemcitabine resistance. Four established and 3 primary PDA cell lines,non-malignant cells,3 patient tumor-derived CSC-enriched spheroidal cultures and tissues from patients who did or did not receive aspirin before surgery were analyzed using MTT assays,flow cytometry,colony and spheroid formation assays,Western blot analysis,antibody protein arrays,electrophoretic mobility shift assays (EMSAs),immunohistochemistry and in vivo xenotransplantation. Aspirin significantly induced apoptosis and reduced the viability,self-renewal potential,and expression of proteins involved in inflammation and stem cell signaling. Aspirin also reduced the growth and invasion of tumors in vivo,and it significantly prolonged the survival of mice with orthotopic pancreatic xenografts in combination with gemcitabine. This was associated with a decreased expression of markers for progression,inflammation and desmoplasia. These findings were confirmed in tissue samples obtained from patients who had or had not taken aspirin before surgery. Importantly,aspirin sensitized cells that were resistant to gemcitabine and thereby enhanced the therapeutic efficacy. Aspirin showed no obvious toxic effects on normal cells,chick embryos or mice. These results highlight aspirin as an effective,inexpensive and well-tolerated co-treatment to target inflammation,desmoplasia and CSC features PDA.
View Publication
文献
Zhang M et al. (DEC 2015)
Biomaterials 72 163--171
Applications of stripe assay in the study of CXCL12-mediated neural progenitor cell migration and polarization.
The polarization and migration of neural progenitor cells (NPCs) are critical for embryonic brain development and neurogenesis after brain injury. Although stromal-derived factor-1α (SDF-1α,CXCL12) and its receptor CXCR4 are well-known to mediate the migration of NPCs in the developing brain,the dynamic cellular processes and structure-related molecular events remain elusive. Transwell and microfluidic-based assays are classical assays to effectively study cellular migration. However,both of them have limitations in the analysis of a single cell. In this study,we modified the stripe assay and extended its applications in the study of NPC polarization and intracellular molecular events associated with CXCL12-mediated migration. In response to localized CXCL12,NPCs formed lamellipodia in the stripe assay. Furthermore,CXCR4 and Rac1 quickly re-distributed to the area of lamellipodia,indicating their roles in NPC polarization upon CXCL12 stimulation. Although the chemokine stripes in the assay provided concentration gradients that can be best used to study cellular polarization and migration through immunocytochemistry,they can also generate live imaging data with comparable quality. In conclusion,stripe assay is a visual,dynamic and economical tool to study cellular mobility and its related molecule mechanisms.
View Publication
文献
Zhang L et al. (APR 2016)
Human Reproduction 31 4 832--843
Protein kinase A inhibitor, H89, enhances survival and clonogenicity of dissociated human embryonic stem cells through Rho-associated coiled-coil containing protein kinase (ROCK) inhibition
H89 inhibits the dissociation-induced phosphorylation of PKA and two substrates of Rho-associated coiled-coil containing protein kinase (ROCK),myosin light chain (MLC2) and myosin phosphatase target subunit 1 (MYPT1),significantly increases cell survival and colony formation,and strongly depresses dissociation-induced cell death and cell blebbing without affecting the pluripotency of hESCs and their differentiation in vitro.
View Publication
Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b.
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However,successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here,using microRNA (miRNA) expression profile analyses,we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2,a let-7-targeting gene,enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly,HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2,whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together,these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal,providing a strategy for the clinical treatment of neurological diseases.
View Publication
文献
Yasuda T et al. (MAY 2013)
The Journal of Physiology 591 10 2579--2591
K v 3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation
Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs,voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However,the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1,a high voltage-gated KDR channel,was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties,such as resting membrane potential,of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation,not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.
View Publication