Mazur-Kolecka B et al. (MAY 2012)
Journal of neuroscience research 90 5 999--1010
Effect of DYRK1A activity inhibition on development of neuronal progenitors isolated from Ts65Dn mice.
Overexpression of dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1A (DYRK1A),encoded by a gene located in the Down syndrome (DS) critical region,is considered a major contributor to developmental abnormalities in DS. DYRK1A regulates numerous genes involved in neuronal commitment,differentiation,maturation,and apoptosis. Because alterations of neurogenesis could lead to impaired brain development and mental retardation in individuals with DS,pharmacological normalization of DYRK1A activity has been postulated as DS therapy. We tested the effect of harmine,a specific DYRK1A inhibitor,on the development of neuronal progenitor cells (NPCs) isolated from the periventricular zone of newborn mice with segmental trisomy 16 (Ts65Dn mice),a mouse model for DS that overexpresses Dyrk1A by 1.5-fold. Trisomy did not affect the ability of NPCs to expand in culture. Twenty-four hours after stimulation of migration and neuronal differentiation,NPCs showed increased expression of Dyrk1A,particularly in the trisomic cultures. After 7 days,NPCs developed into a heterogeneous population of differentiating neurons and astrocytes that expressed Dyrk1A in the nuclei. In comparison with disomic cells,NPCs with trisomy showed premature neuronal differentiation and enhanced γ-aminobutyric acid (GABA)-ergic differentiation,but astrocyte development was unchanged. Harmine prevented premature neuronal maturation of trisomic NPCs but not acceleration of GABA-ergic development. In control NPCs,harmine treatment caused altered neuronal development of NPCs,similar to that in trisomic NPCs with Dyrk1A overexpression. This study suggests that pharmacological normalization of DYRK1A activity may have a potential role in DS therapy.
View Publication
文献
Hirai S et al. (MAR 2012)
The EMBO journal 31 5 1190--202
RP58 controls neuron and astrocyte differentiation by downregulating the expression of Id1-4 genes in the developing cortex.
Appropriate number of neurons and glial cells is generated from neural stem cells (NSCs) by the regulation of cell cycle exit and subsequent differentiation. Although the regulatory mechanism remains obscure,Id (inhibitor of differentiation) proteins are known to contribute critically to NSC proliferation by controlling cell cycle. Here,we report that a transcriptional factor,RP58,negatively regulates all four Id genes (Id1-Id4) in developing cerebral cortex. Consistently,Rp58 knockout (KO) mice demonstrated enhanced astrogenesis accompanied with an excess of NSCs. These phenotypes were mimicked by the overexpression of all Id genes in wild-type cortical progenitors. Furthermore,Rp58 KO phenotypes were rescued by the knockdown of all Id genes in mutant cortical progenitors but not by the knockdown of each single Id gene. Finally,we determined p57 as an effector gene of RP58-Id-mediated cell fate control. These findings establish RP58 as a novel key regulator that controls the self-renewal and differentiation of NSCs and restriction of astrogenesis by repressing all Id genes during corticogenesis.
View Publication
文献
Poornima V et al. (MAR 2012)
Journal of molecular neuroscience : MN 46 3 585--94
P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization.
Activation of P2X(7) receptor (P2X(7)R) and pannexin have been implicated in membrane permeabilization associated with ischemic cell death and many other inflammatory processes. P2X(7)R has a unique property of forming large pore upon repeated or prolonged application of agonist like ATP or 2',3'-(4-benzoyl) benzoyl ATP. It has been proposed that pannexin 1 (panx1) hemichannel associates with P2X(7)R to form large pore,though the actual mechanism is not yet understood. Calcium concentration in extracellular milieu drops in many patho-physiological conditions,e.g. ischemia,when P2X(7)R/pannexin is also known to be activated. Therefore,we hypothesize that extracellular calcium ([Ca(2+)](o)) plays an important role in the coupling of P2X(7)R-panx1 and subsequent membrane permeabilization. In this study we show that membrane permeability of the P2X(7)R and panx1 expressing N2A cell increases in ([Ca(2+)](o))-free solution. In [Ca(2+)](o)-free solution,fluorescent dye calcein trapped cells exhibited time-dependent dye leakage resulting in about 50% decrease of fluorescence intensity in 30 min. Control cells in 2 mM [Ca(2+)](o) did not show such leakage. Like N2A cells,mixed culture of neuron and glia,derived from hippocampal progenitor cells showed similar dye leakage. Dye leakage was blocked either by pannexin-specific blocker,carbenoxolone or P2X(7)R antagonists,Brilliant Blue G,and oxidized ATP. Furthermore P2X(7)R and panx1 were co-immunoprecipitated. The amount of P2X(7)R protein pulled-down with panx1,increased by twofold when cells were incubated 30 min in [Ca(2+)](o)-free buffer. Taken together,the results of this study demonstrate the activation and association of P2X(7)R-panx1,triggered by the removal of [Ca(2+)](o).
View Publication
文献
Arscott WT et al. (SEP 2011)
Brain research 1413 1--8
Interferon β-1b directly modulates human neural stem/progenitor cell fate.
Interferon beta (IFN-β) is a mainline treatment for multiple sclerosis (MS); however its exact mechanism of action is not completely understood. IFN-β is known as an immunomodulator; although recent evidence suggests that IFN-β may also act directly on neural stem/progenitor cells (NPCs) in the central nervous system (CNS). NPCs can differentiate into all neural lineage cells,which could contribute to the remyelination and repair of MS lesions. Understanding how IFN-β influences NPC physiology is critical to develop more specific therapies that can better assist this repair process. In this study,we investigated the effects of IFN β-1b (Betaseron®) on human NPCs in vitro (hNPCs). Our data demonstrate a dose-dependent response of hNPCs to IFN β-1b treatment via sustained proliferation and differentiation. Furthermore,we offer insight into the signaling pathways involved in these mechanisms. Overall,this study shows a direct effect of IFN β-1b on hNPCs and highlights the need to further understand how current MS treatments can modulate endogenous NPC populations within the CNS.
View Publication
文献
Spiller SE et al. (DEC 2011)
BMC Cancer 11 1 136
Inhibition of nuclear factor kappa-B signaling reduces growth in medulloblastoma in vivo
BACKGROUND Medulloblastoma is a highly malignant pediatric brain tumor that requires surgery,whole brain and spine irradiation,and intense chemotherapy for treatment. A more sophisticated understanding of the pathophysiology of medulloblastoma is needed to successfully reduce the intensity of treatment and improve outcomes. Nuclear factor kappa-B (NFκB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. METHODS To test the importance of NFκB to medulloblastoma cell growth,the effects of multiple drugs that inhibit NFκB,pyrrolidine dithiocarbamate,diethyldithiocarbamate,sulfasalazine,curcumin and bortezomib,were studied in medulloblastoma cell lines compared to a malignant glioma cell line and normal neurons. Expression of endogenous NFκB was investigated in cultured cells,xenograft flank tumors,and primary human tumor samples. A dominant negative construct for the endogenous inhibitor of NFκB,IκB,was prepared from medulloblastoma cell lines and flank tumors were established to allow specific pathway inhibition. RESULTS We report high constitutive activity of the canonical NFκB pathway,as seen by Western analysis of the NFκB subunit p65,in medulloblastoma tumors compared to normal brain. The p65 subunit of NFκB is extremely highly expressed in xenograft tumors from human medulloblastoma cell lines; though,conversely,the same cells in culture have minimal expression without specific stimulation. We demonstrate that pharmacological inhibition of NFκB in cell lines halts proliferation and leads to apoptosis. We show by immunohistochemical stain that phosphorylated p65 is found in the majority of primary tumor cells examined. Finally,expression of a dominant negative form of the endogenous inhibitor of NFκB,dnIκB,resulted in poor xenograft tumor growth,with average tumor volumes 40% smaller than controls. CONCLUSIONS These data collectively demonstrate that NFκB signaling is important for medulloblastoma tumor growth,and that inhibition can reduce tumor size and viability in vivo. We discuss the implications of NFκB signaling on the approach to managing patients with medulloblastoma in order to improve clinical outcomes.
View Publication
文献
Cai S et al. (APR 2011)
Clinical cancer research : an official journal of the American Association for Cancer Research 17 8 2195--206
Humanized bone marrow mouse model as a preclinical tool to assess therapy-mediated hematotoxicity.
PURPOSE: Preclinical in vivo studies can help guide the selection of agents and regimens for clinical testing. However,one of the challenges in screening anticancer therapies is the assessment of off-target human toxicity. There is a need for in vivo models that can simulate efficacy and toxicities of promising therapeutic regimens. For example,hematopoietic cells of human origin are particularly sensitive to a variety of chemotherapeutic regimens,but in vivo models to assess potential toxicities have not been developed. In this study,a xenograft model containing humanized bone marrow is utilized as an in vivo assay to monitor hematotoxicity. EXPERIMENTAL DESIGN: A proof-of-concept,temozolomide-based regimen was developed that inhibits tumor xenograft growth. This regimen was selected for testing because it has been previously shown to cause myelosuppression in mice and humans. The dose-intensive regimen was administered to NOD.Cg-Prkdc(scid)IL2rg(tm1Wjl)/Sz (NOD/SCID/γchain(null)),reconstituted with human hematopoietic cells,and the impact of treatment on human hematopoiesis was evaluated. RESULTS: The dose-intensive regimen resulted in significant decreases in growth of human glioblastoma xenografts. When this regimen was administered to mice containing humanized bone marrow,flow cytometric analyses indicated that the human bone marrow cells were significantly more sensitive to treatment than the murine bone marrow cells and that the regimen was highly toxic to human-derived hematopoietic cells of all lineages (progenitor,lymphoid,and myeloid). CONCLUSIONS: The humanized bone marrow xenograft model described has the potential to be used as a platform for monitoring the impact of anticancer therapies on human hematopoiesis and could lead to subsequent refinement of therapies prior to clinical evaluation.
View Publication
文献
Walker TL et al. (JAN 2011)
PloS one 6 3 e18153
The latent stem cell population is retained in the hippocampus of transgenic Huntington's disease mice but not wild-type mice.
The demonstration of the brain's ability to initiate repair in response to disease or injury has sparked considerable interest in therapeutic strategies to stimulate adult neurogenesis. In this study we examined the effect of a progressive neurodegenerative condition on neural precursor activity in the subventricular zone (SVZ) and hippocampus of the R6/1 transgenic mouse model of Huntington's disease (HD). Our results revealed an age-related decline in SVZ precursor numbers in both wild-type (WT) and HD mice. Interestingly,hippocampal precursor numbers declined with age in WT mice,although we observed maintenance in hippocampal precursor number in the HD animals in response to advancement of the disease. This maintenance was consistent with activation of a recently identified latent hippocampal precursor population. We found that the small latent stem cell population was also maintained in the HD hippocampus at 33 weeks,whereas it was not present in the WT. Our findings demonstrate that,despite a loss of neurogenesis in the HD hippocampus in vivo,there is a unique maintenance of the precursor and stem cells,which may potentially be activated to ameliorate disease symptoms.
View Publication
文献
Azari H et al. (JAN 2011)
Journal of visualized experiments : JoVE 49
Neural-colony forming cell assay: an assay to discriminate bona fide neural stem cells from neural progenitor cells.
The neurosphere assay (NSA) is one of the most frequently used methods to isolate,expand and also calculate the frequency of neural stem cells (NSCs). Furthermore,this serum-free culture system has also been employed to expand stem cells and determine their frequency from a variety of tumors and normal tissues. It has been shown recently that a one-to-one relationship does not exist between neurosphere formation and NSCs. This suggests that the NSA as currently applied,overestimates the frequency of NSCs in a mixed population of neural precursor cells isolated from both the embryonic and adult mammalian brain. This video practically demonstrates a novel collagen based semi- solid assay,the neural-colony forming cell assay (N-CFCA),which has the ability to discriminate stem from progenitor cells based on their long-term proliferative potential,and thus provides a method to enumerate NSC frequency. In the N-CFCA,colonies ≥2 mm in diameter are derived from cells that meet all the functional criteria of a NSC,while colonies textless 2mm are derived from progenitors. The N-CFCA procedure can be used for cells prepared from different sources including primary and cultured adult or embryonic mouse CNS cells. Here we use cells prepared from passage one neurospheres generated from embryonic day 14 mice brain to perform N-CFCA. The cultures are replenished with proliferation medium every seven days for three weeks to allow the plated cells to exhibit their full proliferative potential and then the frequency of neural progenitor and bona fide neural stem cells is calculated respectively by counting the number of colonies that are textless 2mm and the ones that are ≥2mm in reference to the number of cells that were initially plated.
View Publication
文献
Squatrito M et al. (DEC 2010)
Cancer cell 18 6 619--29
Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas.
Maintenance of genomic integrity is essential for adult tissue homeostasis and defects in the DNA-damage response (DDR) machinery are linked to numerous pathologies including cancer. Here,we present evidence that the DDR exerts tumor suppressor activity in gliomas. We show that genes encoding components of the DDR pathway are frequently altered in human gliomas and that loss of elements of the ATM/Chk2/p53 cascade accelerates tumor formation in a glioma mouse model. We demonstrate that Chk2 is required for glioma response to ionizing radiation in vivo and is necessary for DNA-damage checkpoints in the neuronal stem cell compartment. Finally,we observed that the DDR is constitutively activated in a subset of human GBMs,and such activation correlates with regions of hypoxia.
View Publication
文献
Ma I and Allan AL (JUN 2011)
Stem cell reviews 7 2 292--306
The role of human aldehyde dehydrogenase in normal and cancer stem cells.
Normal stem cells and cancer stem cells (CSCs) share similar properties,in that both have the capacity to self-renew and differentiate into multiple cell types. In both the normal stem cell and cancer stem cell fields,there has been a great need for a universal marker that can effectively identify and isolate these rare populations of cells in order to characterize them and use this information for research and therapeutic purposes. Currently,it would appear that certain isoenzymes of the aldehyde dehydrogenase (ALDH) superfamily may be able to fulfill this role as a marker for both normal and cancer stem cells. ALDH has been identified as an important enzyme in the protection of normal hematopoietic stem cells,and is now also widely used as a marker to identify and isolate various types of normal stem cells and CSCs. In addition,emerging evidence suggests that ALDH1 is not only a marker for stem cells,but may also play important functional roles related to self-protection,differentiation,and expansion. This comprehensive review discusses the role that ALDH plays in normal stem cells and CSCs,with focus on ALDH1 and ALDH3A1. Discrepancies in the functional themes between cell types and future perspectives for therapeutic applications will also be discussed.
View Publication
文献
Agostini M et al. (DEC 2010)
Biochemical and biophysical research communications 403 1 13--7
p73 regulates maintenance of neural stem cell.
p73,a member of the p53 family,is a transcription factor that plays a key role in many biological processes. In the present study,we show that TAp73 is expressed in neural stem cells (NSC) and its expression increases following their differentiation. NSC from p73 null mice have a reduced proliferative potential,together with reduced expression of members of the Sox-2 and Notch gene families known to be important for NSC proliferation. In parallel with this in vitro data,the width of the neurogenic areas was reduced in the brains of embryonic and adult p73-/- mice. These data suggest that p73,and in particular TAp73,is important for maintenance of the NSC pool.
View Publication
文献
Alison MR et al. (DEC 2010)
The Journal of pathology 222 4 335--44
Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose?
Despite many years of intensive effort,there is surprisingly little consensus on the most suitable markers with which to locate and isolate stem cells from adult tissues. By comparison,the study of cancer stem cells is still in its infancy; so,unsurprisingly,there is great uncertainty as to the identity of these cells. Stem cell markers can be broadly categorized into molecular determinants of self-renewal,clonogenicity,multipotentiality,adherence to the niche,and longevity. This review assesses the utility of recognizing cancer stem cells by virtue of high expression of aldehyde dehydrogenases (ALDHs),probably significant determinants of cell survival through their ability to detoxify many potentially cytotoxic molecules,and contributing to drug resistance. Antibodies are available against the ALDH enzyme family,but the vast majority of studies have used cell sorting techniques to enrich for cells expressing these enzymes. Live cells expressing high ALDH activity are usually identified by the ALDEFLUOR kit and sorted by fluorescence activated cell sorting (FACS). For many human tumours,but notably breast cancer,cell selection based upon ALDH activity appears to be a useful marker for enriching for cells with tumour-initiating activity (presumed cancer stem cells) in immunodeficient mice,and indeed the frequency of so-called ALDH(bri) cells in many tumours can be an independent prognostic indicator.
View Publication