Zhang L et al. (APR 2016)
Human Reproduction 31 4 832--843
Protein kinase A inhibitor, H89, enhances survival and clonogenicity of dissociated human embryonic stem cells through Rho-associated coiled-coil containing protein kinase (ROCK) inhibition
H89 inhibits the dissociation-induced phosphorylation of PKA and two substrates of Rho-associated coiled-coil containing protein kinase (ROCK),myosin light chain (MLC2) and myosin phosphatase target subunit 1 (MYPT1),significantly increases cell survival and colony formation,and strongly depresses dissociation-induced cell death and cell blebbing without affecting the pluripotency of hESCs and their differentiation in vitro.
View Publication
Rapid and Efficient Direct Conversion of Human Adult Somatic Cells into Neural Stem Cells by HMGA2/let-7b.
A recent study has suggested that fibroblasts can be converted into mouse-induced neural stem cells (miNSCs) through the expression of defined factors. However,successful generation of human iNSCs (hiNSCs) has proven challenging to achieve. Here,using microRNA (miRNA) expression profile analyses,we showed that let-7 microRNA has critical roles for the formation of PAX6/NESTIN-positive colonies from human adult fibroblasts and the proliferation and self-renewal of hiNSCs. HMGA2,a let-7-targeting gene,enables induction of hiNSCs that displayed morphological/molecular features and in vitro/in vivo differentiation potential similar to H9-derived NSCs. Interestingly,HMGA2 facilitated the efficient conversion of senescent somatic cells or blood CD34+ cells into hiNSCs through an interaction with SOX2,whereas other combinations or SOX2 alone showed a limited conversion ability. Taken together,these findings suggest that HMGA2/let-7 facilitates direct reprogramming toward hiNSCs in minimal conditions and maintains hiNSC self-renewal,providing a strategy for the clinical treatment of neurological diseases.
View Publication
文献
Yasuda T et al. (MAY 2013)
The Journal of Physiology 591 10 2579--2591
K v 3.1 channels stimulate adult neural precursor cell proliferation and neuronal differentiation
Adult neural stem/precursor cells (NPCs) play a pivotal role in neuronal plasticity throughout life. Among ion channels identified in adult NPCs,voltage-gated delayed rectifier K(+) (KDR) channels are dominantly expressed. However,the KDR channel subtype and its physiological role are still undefined. We used real-time quantitative RT-PCR and gene knockdown techniques to identify a major functional KDR channel subtype in adult NPCs. Dominant mRNA expression of Kv3.1,a high voltage-gated KDR channel,was quantitatively confirmed. Kv3.1 gene knockdown with specific small interfering RNAs (siRNA) for Kv3.1 significantly inhibited Kv3.1 mRNA expression by 63.9% (P < 0.001) and KDR channel currents by 52.2% (P < 0.001). This indicates that Kv3.1 is the subtype responsible for producing KDR channel outward currents. Resting membrane properties,such as resting membrane potential,of NPCs were not affected by Kv3.1 expression. Kv3.1 knockdown with 300 nm siRNA inhibited NPC growth (increase in cell numbers) by 52.9% (P < 0.01). This inhibition was attributed to decreased cell proliferation,not increased cell apoptosis. We also established a convenient in vitro imaging assay system to evaluate NPC differentiation using NPCs from doublecortin-green fluorescent protein transgenic mice. Kv3.1 knockdown also significantly reduced neuronal differentiation by 31.4% (P < 0.01). We have demonstrated that Kv3.1 is a dominant functional KDR channel subtype expressed in adult NPCs and plays key roles in NPC proliferation and neuronal lineage commitment during differentiation.
View Publication
文献
Yamazaki K et al. (DEC 2016)
Journal of Biomolecular Screening 21 10 1054--1064
Functional Comparison of Neuronal Cells Differentiated from Human Induced Pluripotent Stem CellDerived Neural Stem Cells under Different Oxygen and Medium Conditions
Because neurons are difficult to obtain from humans,generating functional neurons from human induced pluripotent stem cells (hiPSCs) is important for establishing physiological or disease-relevant screening systems for drug discovery. To examine the culture conditions leading to efficient differentiation of functional neural cells,we investigated the effects of oxygen stress (2% or 20% O2) and differentiation medium (DMEM/F12:Neurobasal-based [DN] or commercial [PhoenixSongs Biologicals; PS]) on the expression of genes related to neural differentiation,glutamate receptor function,and the formation of networks of neurons differentiated from hiPSCs (201B7) via long-term self-renewing neuroepithelial-like stem (lt-NES) cells. Expression of genes related to neural differentiation occurred more quickly in PS and/or 2% O2 than in DN and/or 20% O2,resulting in high responsiveness of neural cells to glutamate,N-methyl-d-aspartate (NMDA),α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA),and (S)-3,5-d...
View Publication
文献
Yamamizu K et al. (MAY 2016)
Scientific reports 6 1 25667
Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines.
Mouse embryonic stem cells (ESCs) can differentiate into a wide range - and possibly all cell types in vitro,and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously,we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this NIA Mouse ESC Bank we generated and characterized 48 additional mouse ESC lines,in which single TFs in each line could be induced in a doxycycline-controllable manner. Together,with the previous ESC lines,the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g.,neural lineages by Myt1 Isl1,and St18; mesodermal lineages by Pitx1,Pitx2,Barhl2,and Lmx1a; white blood cells by Myb,Etv2,and Tbx6,and ovary by Pitx1,Pitx2,and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs.
View Publication
文献
Yamamizu K et al. (DEC 2013)
Stem Cell Reports 1 6 545--559
Identification of Transcription Factors for Lineage-Specific ESC Differentiation
A network of transcription factors (TFs) determines cell identity,but identity can be altered by overexpressing a combination of TFs. However,choosing and verifying combinations of TFs for specific cell differentiation have been daunting due to the large number of possible combinations of 2,000 TFs. Here,we report the identification of individual TFs for lineage-specific cell differentiation based on the correlation matrix of global gene expression profiles. The overexpression of identified TFs-Myod1,Mef2c,Esx1,Foxa1,Hnf4a,Gata2,Gata3,Myc,Elf5,Irf2,Elf1,Sfpi1,Ets1,Smad7,Nr2f1,Sox11,Dmrt1,Sox9,Foxg1,Sox2,or Ascl1-can direct efficient,specific,and rapid differentiation into myocytes,hepatocytes,blood cells,and neurons. Furthermore,transfection of synthetic mRNAs of TFs generates their appropriate target cells. These results demonstrate both the utility of this approach to identify potent TFs for cell differentiation,and the unanticipated capacity of single TFs directly guides differentiation to specific lineage fates.
View Publication
文献
Yadavilli S et al. (MAY 2015)
Oncotarget 6 14 12141--55
The emerging role of NG2 in pediatric diffuse intrinsic pontine glioma.
Diffuse intrinsic pontine gliomas (DIPGs) have a dismal prognosis and are poorly understood brain cancers. Receptor tyrosine kinases stabilized by neuron-glial antigen 2 (NG2) protein are known to induce gliomagenesis. Here,we investigated NG2 expression in a cohort of DIPG specimens (n= 50). We demonstrate NG2 expression in the majority of DIPG specimens tested and determine that tumors harboring histone 3.3 mutation express the highest NG2 levels. We further demonstrate that microRNA 129-2 (miR129-2) is downregulated and hypermethylated in human DIPGs,resulting in the increased expression of NG2. Treatment with 5-Azacytidine,a methyltransferase inhibitor,results in NG2 downregulation in DIPG primary tumor cells in vitro. NG2 expression is altered (symmetric segregation) in mitotic human DIPG and mouse tumor cells. These mitotic cells co-express oligodendrocyte (Olig2) and astrocyte (glial fibrillary acidic protein,GFAP) markers,indicating lack of terminal differentiation. NG2 knockdown retards cellular migration in vitro,while NG2 expressing neurospheres are highly tumorigenic in vivo,resulting in rapid growth of pontine tumors. NG2 expression is targetable in vivo using miR129-2 indicating a potential avenue for therapeutic interventions. This data implicates NG2 as a molecule of interest in DIPGs especially those with H3.3 mutation.
View Publication
文献
Xu Y et al. (DEC 2015)
Cryobiology 71 3 486--492
Sensitivity of human embryonic stem cells to different conditions during cryopreservation
Low cell recovery rate of human embryonic stem cells (hESCs) resulting from cryopreservation damages leads to the difficulty in their successful commercialization of clinical applications. Hence in this study,sensitivity of human embryonic stem cells (hESCs) to different cooling rates,ice seeding and cryoprotective agent (CPA) types was compared and cell viability and recovery after cryopreservation under different cooling conditions were assessed. Both extracellular and intracellular ice formation were observed. Reactive oxidative species (ROS) accumulation of hESCs was determined. Cryopreservation of hESCs at 1 °C/min with the ice seeding and at the theoretically predicted optimal cooling rate (TPOCR) led to lower level of intracellular ROS,and prevented irregular and big ice clump formation compared with cryopreservation at 1 °C/min. This strategy further resulted in a significant increase in the hESC recovery when glycerol and 1,2-propanediol were used as the CPAs,but no increase for Me2SO. hESCs after cryopreservation under all the tested conditions still maintained their pluripotency. Our results provide guidance for improving the hESC cryopreservation recovery through the combination of CPA type,cooling rate and ice seeding.
View Publication
文献
Xiong X et al. (NOV 2015)
Journal of controlled release : official journal of the Controlled Release Society 217 113--20
Remote spatiotemporally controlled and biologically selective permeabilization of blood-brain barrier.
The blood-brain barrier (BBB),comprised of brain endothelial cells with tight junctions (TJ) between them,regulates the extravasation of molecules and cells into and out of the central nervous system (CNS). Overcoming the difficulty of delivering therapeutic agents to specific regions of the brain presents a major challenge to treatment of a broad range of brain disorders. Current strategies for BBB opening are invasive,not specific,and lack precise control over the site and timing of BBB opening,which may limit their clinical translation. In the present report,we describe a novel approach based on a combination of stem cell delivery,heat-inducible gene expression and mild heating with high-intensity focused ultrasound (HIFU) under MRI guidance to remotely permeabilize BBB. The permeabilization of the BBB will be controlled with,and limited to where selected pro-inflammatory factors will be secreted secondary to HIFU activation,which is in the vicinity of the engineered stem cells and consequently both the primary and secondary disease foci. This therapeutic platform thus represents a non-invasive way for BBB opening with unprecedented spatiotemporal precision,and if properly and specifically modified,can be clinically translated to facilitate delivery of different diagnostic and therapeutic agents which can have great impact in treatment of various disease processes in the central nervous system.
View Publication
文献
Xia G et al. (JUN 2015)
Stem cells (Dayton,Ohio) 33 6 1829--38
Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells.
Myotonic dystrophy type 1 (DM1) is caused by expanded CTG repeats in the 3'-untranslated region (3' UTR) of the DMPK gene. Correcting the mutation in DM1 stem cells would be an important step toward autologous stem cell therapy. The objective of this study is to demonstrate in vitro genome editing to prevent production of toxic mutant transcripts and reverse phenotypes in DM1 stem cells. Genome editing was performed in DM1 neural stem cells (NSCs) derived from human DM1 induced pluripotent stem (iPS) cells. An editing cassette containing SV40/bGH polyA signals was integrated upstream of the CTG repeats by TALEN-mediated homologous recombination (HR). The expression of mutant CUG repeats transcript was monitored by nuclear RNA foci,the molecular hallmarks of DM1,using RNA fluorescence in situ hybridization. Alternative splicing of microtubule-associated protein tau (MAPT) and muscleblind-like (MBNL) proteins were analyzed to further monitor the phenotype reversal after genome modification. The cassette was successfully inserted into DMPK intron 9 and this genomic modification led to complete disappearance of nuclear RNA foci. MAPT and MBNL 1,2 aberrant splicing in DM1 NSCs were reversed to normal pattern in genome-modified NSCs. Genome modification by integration of exogenous polyA signals upstream of the DMPK CTG repeat expansion prevents the production of toxic RNA and leads to phenotype reversal in human DM1 iPS-cells derived stem cells. Our data provide proof-of-principle evidence that genome modification may be used to generate genetically modified progenitor cells as a first step toward autologous cell transfer therapy for DM1.
View Publication
文献
Xia G and Ashizawa T (JUN 2015)
Histochemistry and cell biology 143 6 557--64
Dynamic changes of nuclear RNA foci in proliferating DM1 cells.
Nuclear RNA foci are molecular hallmarks of myotonic dystrophy type 1 (DM1). However,no designated study has investigated their formation and changes in proliferating cells. Proliferating cells,as stem cells,consist of an important cellular pool in the human body. The revelation of foci changes in these cells might shed light on the effects of the mutation on these specific cells and tissues. In this study,we used human DM1 iPS-cell-derived neural stem cells (NSCs) as cellular models to investigate the formation and dynamic changes of RNA foci in proliferating cells. Human DM1 NSCs derived from human DM1 iPS cells were cultured under proliferation conditions and nonproliferation conditions following mitomycin C treatment. The dynamic changes of foci during the cell cycle were investigated by fluorescence in situ hybridization. We found RNA foci formed and dissociated during the cell cycle. Nuclear RNA foci were most prominent in number and size just prior to entering mitosis (early prophase). During mitosis,most foci disappeared. After entering interphase,RNA foci accumulated again in the nuclei. After stopping cell dividing by treatment of mitomycin C,the number of nuclear RNA foci increased significantly. In summary,DM1 NSC nuclear RNA foci undergo dynamic changes during cell cycle,and mitosis is a mechanism to decrease foci load in the nuclei,which may explain why dividing cells are less affected by the mutation. The dynamic changes need to be considered when using foci as a marker to monitor the effects of therapeutic drugs.
View Publication
文献
Xapelli S et al. (MAY 2013)
PLoS ONE 8 5 e63529
Activation of Type 1 Cannabinoid Receptor (CB1R) Promotes Neurogenesis in Murine Subventricular Zone Cell Cultures
The endocannabinoid system has been implicated in the modulation of adult neurogenesis. Here,we describe the effect of type 1 cannabinoid receptor (CB1R) activation on self-renewal,proliferation and neuronal differentiation in mouse neonatal subventricular zone (SVZ) stem/progenitor cell cultures. Expression of CB1R was detected in SVZ-derived immature cells (Nestin-positive),neurons and astrocytes. Stimulation of the CB1R by (R)-(+)-Methanandamide (R-m-AEA) increased self-renewal of SVZ cells,as assessed by counting the number of secondary neurospheres and the number of Sox2+/+ cell pairs,an effect blocked by Notch pathway inhibition. Moreover,R-m-AEA treatment for 48 h,increased proliferation as assessed by BrdU incorporation assay,an effect mediated by activation of MAPK-ERK and AKT pathways. Surprisingly,stimulation of CB1R by R-m-AEA also promoted neuronal differentiation (without affecting glial differentiation),at 7 days,as shown by counting the number of NeuN-positive neurons in the cultures. Moreover,by monitoring intracellular calcium concentrations ([Ca(2+)]i) in single cells following KCl and histamine stimuli,a method that allows the functional evaluation of neuronal differentiation,we observed an increase in neuronal-like cells. This proneurogenic effect was blocked when SVZ cells were co-incubated with R-m-AEA and the CB1R antagonist AM 251,for 7 days,thus indicating that this effect involves CB1R activation. In accordance with an effect on neuronal differentiation and maturation,R-m-AEA also increased neurite growth,as evaluated by quantifying and measuring the number of MAP2-positive processes. Taken together,these results demonstrate that CB1R activation induces proliferation,self-renewal and neuronal differentiation from mouse neonatal SVZ cell cultures.
View Publication