Kolodziej S et al. (MAY 2014)
Nature communications 5 3995
PADI4 acts as a coactivator of Tal1 by counteracting repressive histone arginine methylation.
The transcription factor Tal1 is a critical activator or repressor of gene expression in hematopoiesis and leukaemia. The mechanism by which Tal1 differentially influences transcription of distinct genes is not fully understood. Here we show that Tal1 interacts with the peptidylarginine deiminase IV (PADI4). We demonstrate that PADI4 can act as an epigenetic coactivator through influencing H3R2me2a. At the Tal1/PADI4 target gene IL6ST the repressive H3R2me2a mark triggered by PRMT6 is counteracted by PADI4,which augments the active H3K4me3 mark and thus increases IL6ST expression. In contrast,at the CTCF promoter PADI4 acts as a repressor. We propose that the influence of PADI4 on IL6ST transcription plays a role in the control of IL6ST expression during lineage differentiation of hematopoietic stem/progenitor cells. These results open the possibility to pharmacologically influence Tal1 in leukaemia.
View Publication
文献
Yang C-TT et al. (AUG 2014)
British Journal of Haematology 166 3 435--448
Human induced pluripotent stem cell derived erythroblasts can undergo definitive erythropoiesis and co-express gamma and beta globins.
Human induced pluripotent stem cells (hiPSCs),like embryonic stem cells,are under intense investigation for novel approaches to model disease and for regenerative therapies. Here,we describe the derivation and characterization of hiPSCs from a variety of sources and show that,irrespective of origin or method of reprogramming,hiPSCs can be differentiated on OP9 stroma towards a multi-lineage haemo-endothelial progenitor that can contribute to CD144(+) endothelium,CD235a(+) erythrocytes (myeloid lineage) and CD19(+) B lymphocytes (lymphoid lineage). Within the erythroblast lineage,we were able to demonstrate by single cell analysis (flow cytometry),that hiPSC-derived erythroblasts express alpha globin as previously described,and that a sub-population of these erythroblasts also express haemoglobin F (HbF),indicative of fetal definitive erythropoiesis. More notably however,we were able to demonstrate that a small sub-fraction of HbF positive erythroblasts co-expressed HbA in a highly heterogeneous manner,but analogous to cord blood-derived erythroblasts when cultured using similar methods. Moreover,the HbA expressing erythroblast population could be greatly enhanced (44textperiodcentered0 ± 6textperiodcentered04%) when a defined serum-free approach was employed to isolate a CD31(+) CD45(+) erythro-myeloid progenitor. These findings demonstrate that hiPSCs may represent a useful alternative to standard sources of erythrocytes (RBCs) for future applications in transfusion medicine.
View Publication
文献
Catalli A et al. (MAY 2014)
PloS one 9 5 e96891
Stimulus-selective regulation of human mast cell gene expression, degranulation and leukotriene production by fluticasone and salmeterol.
Despite the fact that glucocorticoids and long acting beta agonists are effective treatments for asthma,their effects on human mast cells (MC) appear to be modest. Although MC are one of the major effector cells in the underlying inflammatory reactions associated with asthma,their regulation by these drugs is not yet fully understood and,in some cases,controversial. Using a human immortalized MC line (LAD2),we studied the effects of fluticasone propionate (FP) and salmeterol (SM),on the release of early and late phase mediators. LAD2 cells were pretreated with FP (100 nM),SM (1 µM),alone and in combination,at various incubation times and subsequently stimulated with agonists substance P,C3a and IgE/anti-IgE. Degranulation was measured by the release of β-hexosaminidase. Cytokine and chemokine expression were measured using quantitative PCR,ELISA and cytometric bead array (CBA) assays. The combination of FP and SM synergistically inhibited degranulation of MC stimulated with substance P (33% inhibition compared to control,n = 3,P>05). Degranulation was inhibited by FP alone,but not SM,when MC were stimulated with C3a (48% inhibition,n = 3,P>05). As previously reported,FP and SM did not inhibit degranulation when MC were stimulated with IgE/anti-IgE. FP and SM in combination inhibited substance P-induced release of tumor necrosis factor (TNF),CCL2,and CXCL8 (98%,99% and 92% inhibition,respectively,n = 4,P>05). Fluticasone and salmeterol synergistically inhibited mediator production by human MC stimulated with the neuropeptide substance P. This synergistic effect on mast cell signaling may be relevant to the therapeutic benefit of combination therapy in asthma.
View Publication
文献
Csaszar E et al. (JAN 2014)
Blood 123 5 650--8
Blood stem cell fate regulation by Delta-1-mediated rewiring of IL-6 paracrine signaling.
Increasing evidence supports the importance of cell extrinsic regulation in stem cell fate control. Hematopoietic stem cells (HSC) are responsive to local signals from their niche and to systemic feedback from progenitors and mature cells. The Notch ligand Delta-1 (DL1),a key component of the stem cell niche,regulates human hematopoietic lineage development in a dose-dependent manner and has been used clinically for primitive progenitor expansion. How DL1 acts to regulate HSC fate and whether these actions are related to its lineage skewing effects are poorly understood. Here we demonstrate that,although DL1 activates signal transducer and activator of transcription 3 signaling similarly to the gp130-activating cytokine interleukin-6 (IL-6),it has opposite effects on myeloid cell production. Mechanistically,these different outcomes are attributable to a DL1-mediated reduction in membrane (m)-bound IL-6 receptor (R) expression,converting progenitor cells from being directly IL-6 responsive to requiring both IL-6 and soluble (s) IL-6R for activation. Concomitant reduction of both mIL-6R (by DL1 supplementation) and sIL-6R (using dynamically fed cultures) reduced myeloid cell production and led to enhanced outputs of human HSCs. This work describes a new mode of cytokine action in which DL1 changes cytokine receptor distributions on hematopoietic cells,altering feedback networks and their impact on stem cell fate.
View Publication
文献
Pei S et al. (NOV 2013)
The Journal of biological chemistry 288 47 33542--58
Targeting aberrant glutathione metabolism to eradicate human acute myelogenous leukemia cells.
The development of strategies to eradicate primary human acute myelogenous leukemia (AML) cells is a major challenge to the leukemia research field. In particular,primitive leukemia cells,often termed leukemia stem cells,are typically refractory to many forms of therapy. To investigate improved strategies for targeting of human AML cells we compared the molecular mechanisms regulating oxidative state in primitive (CD34(+)) leukemic versus normal specimens. Our data indicate that CD34(+) AML cells have elevated expression of multiple glutathione pathway regulatory proteins,presumably as a mechanism to compensate for increased oxidative stress in leukemic cells. Consistent with this observation,CD34(+) AML cells have lower levels of reduced glutathione and increased levels of oxidized glutathione compared with normal CD34(+) cells. These findings led us to hypothesize that AML cells will be hypersensitive to inhibition of glutathione metabolism. To test this premise,we identified compounds such as parthenolide (PTL) or piperlongumine that induce almost complete glutathione depletion and severe cell death in CD34(+) AML cells. Importantly,these compounds only induce limited and transient glutathione depletion as well as significantly less toxicity in normal CD34(+) cells. We further determined that PTL perturbs glutathione homeostasis by a multifactorial mechanism,which includes inhibiting key glutathione metabolic enzymes (GCLC and GPX1),as well as direct depletion of glutathione. These findings demonstrate that primitive leukemia cells are uniquely sensitive to agents that target aberrant glutathione metabolism,an intrinsic property of primary human AML cells.
View Publication
文献
Elliott S et al. (JUL 2013)
PloS one 8 7 e68083
Epo receptors are not detectable in primary human tumor tissue samples.
Erythropoietin (Epo) is a cytokine that binds and activates an Epo receptor (EpoR) expressed on the surface of erythroid progenitor cells to promote erythropoiesis. While early studies suggested EpoR transcripts were expressed exclusively in the erythroid compartment,low-level EpoR transcripts were detected in nonhematopoietic tissues and tumor cell lines using sensitive RT-PCR methods. However due to the widespread use of nonspecific anti-EpoR antibodies there are conflicting data on EpoR protein expression. In tumor cell lines and normal human tissues examined with a specific and sensitive monoclonal antibody to human EpoR (A82),little/no EpoR protein was detected and it was not functional. In contrast,EpoR protein was reportedly detectable in a breast tumor cell line (MCF-7) and breast cancer tissues with an anti-EpoR polyclonal antibody (M-20),and functional responses to rHuEpo were reported with MCF-7 cells. In another study,a functional response was reported with the lung tumor cell line (NCI-H838) at physiological levels of rHuEpo. However,the specificity of M-20 is in question and the absence of appropriate negative controls raise questions about possible false-positive effects. Here we show that with A82,no EpoR protein was detectable in normal human and matching cancer tissues from breast,lung,colon,ovary and skin with little/no EpoR in MCF-7 and most other breast and lung tumor cell lines. We show further that M-20 provides false positive staining with tissues and it binds to a non-EpoR protein that migrates at the same size as EpoR with MCF-7 lysates. EpoR protein was detectable with NCI-H838 cells,but no rHuEpo-induced phosphorylation of AKT,STAT3,pS6RP or STAT5 was observed suggesting the EpoR was not functional. Taken together these results raise questions about the hypothesis that most tumors express high levels of functional EpoR protein.
View Publication
文献
Lu S-J et al. (JUL 2013)
Regenerative medicine 8 4 413--424
3D microcarrier system for efficient differentiation of human pluripotent stem cells into hematopoietic cells without feeders and serum [corrected].
BACKGROUND Human embryonic stem cells (hESCs) have been derived and maintained on mouse embryonic fibroblast feeders to keep their undifferentiated status. To realize their clinical potential,a feeder-free and scalable system for large scale production of hESCs and their differentiated derivatives is required. MATERIALS & METHODS hESCs were cultured and passaged on serum/feeder-free 3D microcarriers for five passages. For embryoid body (EB) formation and hemangioblast differentiation,the medium for 3D microcarriers was directly switched to EB medium. RESULTS hESCs on 3D microcarriers maintained pluripotency and formed EBs,which were ten-times more efficient than hESCs cultured under 2D feeder-free conditions (0.11 ± 0.03 EB cells/hESC input 2D vs 1.19 ± 0.32 EB cells/hESC input 3D). After replating,EB cells from 3D culture readily developed into hemangioblasts with the potential to differentiate into hematopoietic and endothelial cells. Furthermore,this 3D system can also be adapted to human induced pluripotent stem cells,which generate functional hemangioblasts with high efficiency. CONCLUSION This 3D serum- and stromal-free microcarrier system is important for future clinical applications,with the potential of developing to a GMP-compatible scalable system.
View Publication
文献
Mahbub AA et al. (DEC 2013)
Anti-cancer agents in medicinal chemistry 13 10 1601--13
Differential effects of polyphenols on proliferation and apoptosis in human myeloid and lymphoid leukemia cell lines.
BACKGROUND Mortality rates for leukemia are high despite considerable improvements in treatment. Since polyphenols exert pro-apoptotic effects in solid tumors,our study investigated the effects of polyphenols in haematological malignancies. The effect of eight polyphenols (quercetin,chrysin,apigenin,emodin,aloe-emodin,rhein,cis-stilbene and trans-stilbene) were studied on cell proliferation,cell cycle and apoptosis in four lymphoid and four myeloid leukemic cells lines,together with normal haematopoietic control cells. METHODS Cellular proliferation was measured by CellTiter-Glo(®) luminescent assay; and cell cycle arrest was assessed using flow cytometry of propidium iodide stained cells. Apoptosis was investigated by caspase-3 activity assay using flow cytometry and apoptotic morphology was confirmed by Hoescht 33342 staining. RESULTS Emodin,quercetin,and cis-stilbene were the most effective polyphenols at decreasing cell viability (IC50 values of 5-22 μM,8-33 μM,and 25-85 μM respectively) and inducing apoptosis (AP50 values (the concentration which 50% of cells undergo apoptosis) of 2-27 μM,19-50 μM,and 8-50 μM respectively). Generally,lymphoid cell lines were more sensitive to polyphenol treatment compared to myeloid cell lines,however the most resistant myeloid (KG-1a and K562) cell lines were still found to respond to emodin and quercetin treatment at low micromolar levels. Non-tumor cells were less sensitive to all polyphenols compared to the leukemia cells. CONCLUSIONS These findings suggest that polyphenols have anti-tumor activity against leukemia cells with differential effects. Importantly,the differential sensitivity of emodin,quercetin,and cis-stilbene between leukemia and normal cells suggests that polyphenols are potential therapeutic agents for leukemia.
View Publication
文献
Ayombil F et al. (AUG 2013)
Journal of thrombosis and haemostasis : JTH 11 8 1532--9
Proteolysis of plasma-derived factor V following its endocytosis by megakaryocytes forms the platelet-derived factor V/Va pool.
BACKGROUND Central to appropriate thrombin formation at sites of vascular injury is the concerted assembly of plasma- and/or platelet-derived factor (F) Va and FXa on the activated platelet surface. While the plasma-derived procofactor,FV,must be proteolytically activated by α-thrombin to FVa to function in prothrombinase,the platelet molecule is released from α-granules in a partially activated state,obviating the need for proteolytic activation. OBJECTIVES The current study was performed to test the hypothesis that subsequent to its endocytosis by megakaryocytes,plasma-derived FV is proteolytically processed to form the platelet-derived pool. METHODS & RESULTS Subsequent to FV endocytosis,a time-dependent increase in FV proteolytic products was observed in megakaryocyte lysates by SDS-PAGE followed by phosphorimaging or western blotting. This cleavage was specific and resulted in the formation of products similar in size to FV/Va present in a platelet lysate as well as to the α-thrombin-activated FVa heavy chain and light chain,and their respective precursors. Other proteolytic products were unique to endocytosed FV. The product/precursor relationships of these fragments were defined using anti-FV heavy and light chain antibodies with defined epitopes. Activity measurements indicated that megakaryocyte-derived FV fragments exhibited substantial FVa cofactor activity that was comparable to platelet-derived FV/Va. CONCLUSIONS Taken together,these observations suggest that prior to its packaging in α-granules endocytosed FV undergoes proteolysis by one or more specific megakaryocyte protease(s) to form the partially activated platelet-derived pool.
View Publication
文献
Zhang Y et al. (JUN 2013)
Blood 121 24 4906--16
AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway.
Developing novel therapies that suppress self-renewal of leukemia stem cells may reduce the likelihood of relapses and extend long-term survival of patients with acute myelogenous leukemia (AML). AML1-ETO (AE) is an oncogene that plays an important role in inducing self-renewal of hematopoietic stem/progenitor cells (HSPCs),leading to the development of leukemia stem cells. Previously,using a zebrafish model of AE and a whole-organism chemical suppressor screen,we have discovered that AE induces specific hematopoietic phenotypes in embryonic zebrafish through a cyclooxygenase (COX)-2 and β-catenin-dependent pathway. Here,we show that AE also induces expression of the Cox-2 gene and activates β-catenin in mouse bone marrow cells. Inhibition of COX suppresses β-catenin activation and serial replating of AE(+) mouse HSPCs. Genetic knockdown of β-catenin also abrogates the clonogenic growth of AE(+) mouse HSPCs and human leukemia cells. In addition,treatment with nimesulide,a COX-2 selective inhibitor,dramatically suppresses xenograft tumor formation and inhibits in vivo progression of human leukemia cells. In summary,our data indicate an important role of a COX/β-catenin-dependent signaling pathway in tumor initiation,growth,and self-renewal,and in providing the rationale for testing potential benefits from common COX inhibitors as a part of AML treatments.
View Publication
文献
Cuddihy MJ et al. (APR 2013)
Small (Weinheim an der Bergstrasse,Germany) 9 7 1008--15
Replication of bone marrow differentiation niche: comparative evaluation of different three-dimensional matrices.
The comparative evaluation of different 3D matrices-Matrigel,Puramatrix,and inverted colloidal crystal (ICC) scaffolds-provides a perspective for studying the pathology and potential cures for many blood and bone marrow diseases,and further proves the significance of 3D cultures with direct cell-cell contacts for in vitro mimicry of the human stem cell niche.
View Publication
文献
Wang D et al. (OCT 2013)
Transfusion 53 10 2134--40
Antibody-mediated glycophorin C coligation on K562 cells induces phosphatidylserine exposure and cell death in an atypical apoptotic process.
BACKGROUND Glycophorin C (GPC) is necessary in the maintenance of red blood cell structure. Severe autoimmune hemolytic anemia and hemolytic disease of the fetus and newborn (HDFN) have been associated with Gerbich (Ge) blood group system antigens expressed on GPC. Previous in vitro studies with cord blood progenitor cells have shown that anti-Ge suppresses erythropoiesis. STUDY DESIGN AND METHODS Here,we evaluated the K562 erythroleukemic cell line to study the cellular effects of a murine anti-GPC. Cell proliferation was evaluated after treatment with anti-GPC. Flow cytometry was used to evaluate exofacial phosphatidylserine (PS) expression and cell viability (propidium iodide binding). Cell morphology was evaluated under light microscopy with cytospin preparations stained with May-Grünwald Giemsa. RESULTS Anti-GPC dramatically inhibited K562 proliferation and increased PS expression,consistent with cytoplasmic blebbing,suggesting evidence of apoptosis. Z-VAD-FMK,an inhibitor of classical apoptosis,was unable to reverse the suppressive effect of anti-GPC. However,hemin was able to attenuate growth suppression. CONCLUSION Together,the data suggest that anti-GPC suppresses erythroid proliferation through the induction of nonclassical apoptosis.
View Publication