Guzzo C et al. ( 2012)
The Journal of Immunology 188 2 864--873
IL-27 Enhances LPS-Induced Proinflammatory Cytokine Production via Upregulation of TLR4 Expression and Signaling in Human Monocytes
IL-27,which is produced by activated APCs,bridges innate and adaptive immunity by regulating the development of Th cells. Recent evidence supports a role for IL-27 in the activation of monocytic cells in terms of inflammatory responses. Indeed,proinflammatory and anti-inflammatory activities are attributed to IL-27,and IL-27 production itself is modulated by inflammatory agents such as LPS. IL-27 primes LPS responses in monocytes; however,the molecular mechanism behind this phenomenon is not understood. In this study,we demonstrate that IL-27 priming results in enhanced LPS-induced IL-6,TNF-α,MIP-1α,and MIP-1β expression in human primary monocytes. To elucidate the molecular mechanisms responsible for IL-27 priming,we measured levels of CD14 and TLR4 required for LPS binding. We determined that IL-27 upregulates TLR4 in a STAT3- and NF-κB-dependent manner. Immunofluorescence microscopy revealed enhanced membrane expression of TLR4 and more distinct colocalization of CD14 and TLR4 upon IL-27 priming. Furthermore,IL-27 priming enhanced LPS-induced activation of NF-κB family members. To our knowledge,this study is the first to show a role for IL-27 in regulating TLR4 expression and function. This work is significant as it reveals new mechanisms by which IL-27 can enhance proinflammatory responses that can occur during bacterial infections.
View Publication
文献
Armengol Lopez S et al. (JAN 2012)
International journal of vascular medicine 2012 942512
The oxidative state of chylomicron remnants influences their modulation of human monocyte activation.
Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro,by increasing reactive oxygen species (ROS) production and cell migration. In this study,the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states,normal (CRLPs),protected from oxidation by incorporation of the antioxidant,probucol (pCRLPs),or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs,whilst secretion on monocyte chemoattractant protein-1 was reduced,but oxCRLPs had no additional effect. In contrast,pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.
View Publication
文献
Smedman C et al. (SEP 2011)
Scandinavian journal of immunology
FluoroSpot analysis of TLR-activated monocytes reveals several distinct cytokine secreting subpopulations.
Monocytes have long been considered a heterogeneous group of cells both in terms of morphology and function. In humans,three distinct subsets have been described based on their differential expression of the cell surface markers CD14 and CD16. However,the relationship between these subsets and the production of cytokines has for the most part been based on ELISA measurements,making it difficult to draw conclusions as to their functional profile on the cellular level. In the present study,we have investigated lipoteichoic acid (LTA) and lipopolysaccharide (LPS) induced cytokine secretion by monocytes using the FluoroSpot technique. This method measures the number of cytokine secreting cells on the single cell level and uses fluorescent detection,allowing for the simultaneous analysis of two cytokines from the same population of isolated cells. By this approach,human monocytes from healthy volunteers could be divided into several subgroups as IL-1β,IL-6,TNF-α and MIP-1β were secreted by larger populations of responding cells (25.9-39.2%) compared to the smaller populations of GM-CSF (9.1%),IL-10 (1.3%) and IL-12p40 (1.2%). Furthermore,when studying co-secretion in FluoroSpot,an intricate relationship between the monocytes secreting IL-1β and/or IL-6 and those secreting TNF-α,MIP-1β,GM-CSF,IL-10 and IL-12p40 was revealed. In this way,dissecting the secretion pattern of the monocytes in response to TLR-2 or TLR-4 stimulation,several subpopulations with distinct cytokine secreting profiles could be identified.
View Publication
文献
Surdziel E et al. (APR 2011)
Blood 117 16 4338--48
Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways.
MicroRNAs (miRNAs) are small,noncoding RNAs that regulate gene expression by sequence-specific targeting of multiple mRNAs. Although lineage-,maturation-,and disease-specific miRNA expression has been described,miRNA-dependent phenotypes and miRNA-regulated signaling in hematopoietic cells are largely unknown. Combining functional genomics,biochemical analysis,and unbiased and hypothesis-driven miRNA target prediction,we show that lentivirally over-expressed miR-125b blocks G-CSF-induced granulocytic differentiation and enables G-CSF-dependent proliferation of murine 32D cells. In primary lineage-negative cells,miR-125b over-expression enhances colony-formation in vitro and promotes myelopoiesis in mouse bone marrow chimeras. We identified Stat3 and confirmed Bak1 as miR-125b target genes with approximately 30% and 50% reduction in protein expression,respectively. However,gene-specific RNAi reveals that this reduction,alone and in combination,is not sufficient to block G-CSF-dependent differentiation. STAT3 protein expression,DNA-binding,and transcriptional activity but not induction of tyrosine-phosphorylation and nuclear translocation are reduced upon enforced miR-125b expression,indicating miR-125b-mediated reduction of one or more STAT3 cofactors. Indeed,we identified c-Jun and Jund as potential miR-125b targets and demonstrated reduced protein expression in 32D/miR-125b cells. Interestingly,gene-specific silencing of JUND but not c-JUN partially mimics the miR-125b over-expression phenotype. These data demonstrate coordinated regulation of several signaling pathways by miR-125b linked to distinct phenotypes in myeloid cells.
View Publication
文献
Nanua S et al. (MAR 2011)
Blood 117 13 3539--47
Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane.
Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis that in many cases is caused by mutations of the ELANE gene,which encodes neutrophil elastase (NE). Recent data suggest a model in which ELANE mutations result in NE protein misfolding,induction of endoplasmic reticulum (ER) stress,activation of the unfolded protein response (UPR),and ultimately a block in granulocytic differentiation. To test this model,we generated transgenic mice carrying a targeted mutation of Elane (G193X) reproducing a mutation found in SCN. The G193X Elane allele produces a truncated NE protein that is rapidly degraded. Granulocytic precursors from G193X Elane mice,though without significant basal UPR activation,are sensitive to chemical induction of ER stress. Basal and stress granulopoiesis after myeloablative therapy are normal in these mice. Moreover,inaction of protein kinase RNA-like ER kinase (Perk),one of the major sensors of ER stress,either alone or in combination with G193X Elane,had no effect on basal granulopoiesis. However,inhibition of the ER-associated degradation (ERAD) pathway using a proteosome inhibitor resulted in marked neutropenia in G193X Elane. The selective sensitivity of G913X Elane granulocytic cells to ER stress provides new and strong support for the UPR model of disease patho-genesis in SCN.
View Publication
文献
Christopher MJ et al. (FEB 2011)
The Journal of experimental medicine 208 2 251--60
Expression of the G-CSF receptor in monocytic cells is sufficient to mediate hematopoietic progenitor mobilization by G-CSF in mice.
Granulocyte colony-stimulating factor (G-CSF),the prototypical mobilizing cytokine,induces hematopoietic stem and progenitor cell (HSPC) mobilization from the bone marrow in a cell-nonautonomous fashion. This process is mediated,in part,through suppression of osteoblasts and disruption of CXCR4/CXCL12 signaling. The cellular targets of G-CSF that initiate the mobilization cascade have not been identified. We use mixed G-CSF receptor (G-CSFR)-deficient bone marrow chimeras to show that G-CSF-induced mobilization of HSPCs correlates poorly with the number of wild-type neutrophils. We generated transgenic mice in which expression of the G-CSFR is restricted to cells of the monocytic lineage. G-CSF-induced HSPC mobilization,osteoblast suppression,and inhibition of CXCL12 expression in the bone marrow of these transgenic mice are intact,demonstrating that G-CSFR signals in monocytic cells are sufficient to induce HSPC mobilization. Moreover,G-CSF treatment of wild-type mice is associated with marked loss of monocytic cells in the bone marrow. Finally,we show that bone marrow macrophages produce factors that support the growth and/or survival of osteoblasts in vitro. Together,these data suggest a model in which G-CSFR signals in bone marrow monocytic cells inhibit the production of trophic factors required for osteoblast lineage cell maintenance,ultimately leading to HSPC mobilization.
View Publication
文献
Kim M-H et al. (MAR 2011)
Blood 117 12 3343--52
Neutrophil survival and c-kit(+)-progenitor proliferation in Staphylococcus aureus-infected skin wounds promote resolution.
Polymorphonuclear neutrophils (PMNs) are critical for the formation,maintenance,and resolution of bacterial abscesses. However,the mechanisms that regulate PMN survival and proliferation during the evolution of an abscess are not well defined. Using a mouse model of Staphylococcus aureus abscess formation within a cutaneous wound,combined with real-time imaging of genetically tagged PMNs,we observed that a high bacterial burden elicited a sustained mobilization of PMNs from the bone marrow to the infected wound,where their lifespan was markedly extended. A continuous rise in wound PMN number,which was not accounted for by trafficking from the bone marrow or by prolonged survival,was correlated with the homing of c-kit(+)-progenitor cells from the blood to the wound,where they proliferated and formed mature PMNs. Furthermore,by blocking their recruitment with an antibody to c-kit,which severely limited the proliferation of mature PMNs in the wound and shortened mouse survival,we confirmed that progenitor cells are not only important contributors to PMN expansion in the wound,but are also functionally important for immune protection. We conclude that the abscess environment provides a niche capable of regulating PMN survival and local proliferation of bone marrow-derived c-kit(+)-progenitor cells.
View Publication
文献
Yang Q et al. (MAR 2011)
Blood 117 13 3529--38
E47 regulates hematopoietic stem cell proliferation and energetics but not myeloid lineage restriction.
The immune system is replenished by self-renewing hematopoietic stem cells (HSCs) that produce multipotent progenitors (MPPs) with little renewal capacity. E-proteins,the widely expressed basic helix-loop-helix transcription factors,contribute to HSC and MPP activity,but their specific functions remain undefined. Using quantitative in vivo and in vitro approaches,we show that E47 is dispensable for the short-term myeloid differentiation of HSCs but regulates their long-term capabilities. E47-deficient progenitors show competent myeloid production in short-term assays in vitro and in vivo. However,long-term myeloid and lymphoid differentiation is compromised because of a progressive loss of HSC self-renewal that is associated with diminished p21 expression and hyperproliferation. The activity of E47 is shown to be cell-intrinsic. Moreover,E47-deficient HSCs and MPPs have altered expression of genes associated with cellular energy metabolism,and the size of the MPP pool but not downstream lymphoid precursors in bone marrow or thymus is rescued in vivo by antioxidant. Together,these observations suggest a role for E47 in the tight control of HSC proliferation and energy metabolism,and demonstrate that E47 is not required for short-term myeloid differentiation.
View Publication
文献
Ferraz N et al. (JAN 2010)
International journal of biomaterials 2010 402715
Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages.
The present study shows that alumina nanotopography affects monocyte/macrophage behavior. Human mononuclear cells cultured on alumina membranes with pore diameters of 20 and 200 nm were evaluated in terms of cell adhesion,viability,morphology,and release of proinflammatory cytokines. After 24 hours,cell adhesion was assessed by means of light microscopy and cell viability by measuring LDH release. The inflammatory response was evaluated by quantifying interleukin-1β and tumour necrosis factor-α. Finally,scanning electron microscopy was used to study cell morphology. Results showed pronounced differences in cell number,morphology,and cytokine release depending on the nanoporosity. Few but highly activated cells were found on the 200 nm porous alumina,while relatively larger number of cells were found on the 20 nm porous surface. However,despite their larger number,the cells adhering on the 20 nm surface exhibited reduced pro-inflammatory activity. The data of this paper implies that nanotopography could be exploited for controlling the inflammatory response to implants.
View Publication
文献
Miner JJ et al. (MAR 2011)
The Journal of biological chemistry 286 11 9577--86
Cytoplasmic domain of P-selectin glycoprotein ligand-1 facilitates dimerization and export from the endoplasmic reticulum.
P-selectin glycoprotein ligand-1 (PSGL-1) is a homodimeric transmembrane mucin on leukocytes. During inflammation,reversible interactions of PSGL-1 with selectins mediate leukocyte rolling on vascular surfaces. The transmembrane domain of PSGL-1 is required for dimerization,and the cytoplasmic domain propagates signals that activate β(2) integrins to slow rolling on integrin ligands. Leukocytes from knock-in ΔCD" mice express a truncated PSGL-1 that lacks the cytoplasmic domain. Unexpectedly�
View Publication
文献
Merino A et al. (FEB 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 3 1809--15
Senescent CD14+CD16+ monocytes exhibit proinflammatory and proatherosclerotic activity.
In elderly subjects and in patients with chronic inflammatory diseases,there is an increased subset of monocytes with a CD14(+)CD16(+) phenotype,whose origin and functional relevance has not been well characterized. In this study,we determined whether prolonged survival of human CD14(++)CD16(-) monocytes promotes the emergence of senescent cells,and we analyzed their molecular phenotypic and functional characteristics. We used an in vitro model to prolong the life span of healthy monocytes. We determined cell senescence,intracellular cytokine expression,ability to interact with endothelial cells,and APC activity. CD14(+)CD16(+) monocytes were senescent cells with shortened telomeres (215 ± 37 relative telomere length) versus CD14(++)CD16(-) cells (339 ± 44 relative telomere length; p textless 0.05) and increased expression of β-galactosidase (86.4 ± 16.4% versus 10.3 ± 7.5%,respectively; p = 0.002). CD14(+)CD16(+) monocytes exhibited features of activated cells that included expression of CD209,release of cytokines in response to low-intensity stimulus,and increased capacity to sustain lymphocyte proliferation. Finally,compared with CD14(++)CD16(-) cells,CD14(+)CD16(+) monocytes showed elevated expression of chemokine receptors and increased adhesion to endothelial cells (19.6 ± 8.1% versus 5.3 ± 4.1%; p = 0.033). In summary,our data indicated that the senescent CD14(+)CD16(+) monocytes are activated cells,with increased inflammatory activity and ability to interact with endothelial cells. Therefore,accumulation of senescent monocytes may explain,in part,the development of chronic inflammation and atherosclerosis in elderly subjects and in patients with chronic inflammatory diseases.
View Publication
文献
Okano S et al. (FEB 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 3 1828--39
Provision of continuous maturation signaling to dendritic cells by RIG-I-stimulating cytosolic RNA synthesis of Sendai virus.
Dendritic cell (DC)-based immunotherapy has potential for treating infections and malignant tumors,but the functional capacity of DC must be assessed in detail,especially maturation and Ag-specific CTL priming. Recent reports suggest that DC that are provided with continuous maturation signals in vivo after transfer into patients are required to elicit the full DC functions. We demonstrate in this study that the rSendai virus vector (SeV) is a novel and ideal stimulant,providing DC with a continuous maturation signal via viral RNA synthesis in the cytosol,resulting in full maturation of monocyte-derived DC(s). Both RIG-I-dependent cytokine production and CD4 T cell responses to SeV-derived helper Ags are indispensable for overcoming regulatory T cell suppression to prime melanoma Ag recognized by T cell-1-specific CTL in the regulatory T cell abundant setting. DC stimulated via cytokine receptors,or TLRs,do not show these functional features. Therefore,SeV-infected DC have the potential for DC-directed immunotherapy.
View Publication