Y. Kuwano et al. (MAY 2016)
Journal of Immunology 196 9 3828--33
G$\alpha$i2 and G$\alpha$i3 Differentially Regulate Arrest from Flow and Chemotaxis in Mouse Neutrophils.
Leukocyte recruitment to inflammation sites progresses in a multistep cascade. Chemokines regulate multiple steps of the cascade,including arrest,transmigration,and chemotaxis. The most important chemokine receptor in mouse neutrophils is CXCR2,which couples through G$\alpha$i2- and G$\alpha$i3-containing heterotrimeric G proteins. Neutrophils arrest in response to CXCR2 stimulation. This is defective in G$\alpha$i2-deficient neutrophils. In this study,we show that G$\alpha$i3-deficient neutrophils showed reduced transmigration but normal arrest in mice. We also tested G$\alpha$i2- or G$\alpha$i3-deficient neutrophils in a CXCL1 gradient generated by a microfluidic device. G$\alpha$i3-,but not G$\alpha$i2-,deficient neutrophils showed significantly reduced migration and directionality. This was confirmed in a model of sterile inflammation in vivo. G$\alpha$i2-,but not G$\alpha$i3-,deficient neutrophils showed decreased Ca(2+) flux in response to CXCR2 stimulation. Conversely,G$\alpha$i3-,but not G$\alpha$i2-,deficient neutrophils exhibited reduced AKT phosphorylation upon CXCR2 stimulation. We conclude that G$\alpha$i2 controls arrest and G$\alpha$i3 controls transmigration and chemotaxis in response to chemokine stimulation of neutrophils.
View Publication
文献
Huus KE et al. (APR 2016)
Journal of Immunology 196 7 3097--108
Clinical Isolates of Pseudomonas aeruginosa from Chronically Infected Cystic Fibrosis Patients Fail To Activate the Inflammasome during Both Stable Infection and Pulmonary Exacerbation.
Immune recognition of pathogen-associated ligands leads to assembly and activation of inflammasomes,resulting in the secretion of inflammatory cytokines IL-1β and IL-18 and an inflammatory cell death called pyroptosis. Inflammasomes are important for protection against many pathogens,but their role during chronic infectious disease is poorly understood. Pseudomonas aeruginosa is an opportunistic pathogen that persists in the lungs of cystic fibrosis (CF) patients and may be responsible for the repeated episodes of pulmonary exacerbation characteristic of CF. P. aeruginosa is capable of inducing potent inflammasome activation during acute infection. We hypothesized that to persist within the host during chronic infection,P. aeruginosa must evade inflammasome activation,and pulmonary exacerbations may be the result of restoration of inflammasome activation. We therefore isolated P. aeruginosa from chronically infected CF patients during stable infection and exacerbation and evaluated the impact of these isolates on inflammasome activation in macrophages and neutrophils. P. aeruginosa isolates from CF patients failed to induce inflammasome activation,as measured by the secretion of IL-1β and IL-18 and by pyroptotic cell death,during both stable infection and exacerbation. Inflammasome evasion likely was due to reduced expression of inflammasome ligands and reduced motility and was not observed in environmental isolates or isolates from acute,non-CF infection. These results reveal a novel mechanism of pathogen adaptation by P. aeruginosa to avoid detection by inflammasomes in CF patients and indicate that P. aeruginosa-activated inflammasomes are not involved in CF pulmonary exacerbations.
View Publication
文献
Zimmermann M et al. (JAN 2016)
Scientific Reports 6 19674
IFNα enhances the production of IL-6 by human neutrophils activated via TLR8.
Recently,we reported that human neutrophils produce biologically active amounts of IL-6 when incubated with agonists activating TLR8,a receptor recognizing viral single strand RNA. In this study,we demonstrate that IFNα,a cytokine that modulates the early innate immune responses toward viral and bacterial infections,potently enhances the production of IL-6 in neutrophils stimulated with R848,a TLR8 agonist. We also show that such an effect is not caused by an IFNα-dependent induction of TLR7 and its consequent co-activation with TLR8 in response to R848,but,rather,it is substantially mediated by an increased production and release of endogenous TNFα. The latter cytokine,in an autocrine manner,leads to an augmented synthesis of the IkBζ co-activator and an enhanced recruitment of the C/EBPβ transcription factor to the IL-6 promoter. Moreover,we show that neutrophils from SLE patients with active disease state,hence displaying an IFN-induced gene expression signature,produce increased amounts of both IL-6 and TNFα in response to R848 as compared to healthy donors. Altogether,data uncover novel effects that type I IFN exerts in TLR8-activated neutrophils,which therefore enlarge our knowledge on the various biological actions which type I IFN orchestrates during infectious and autoimmune diseases.
View Publication
文献
Joulia R et al. (JAN 2015)
Nature communications 6 6174
Mast cells form antibody-dependent degranulatory synapse for dedicated secretion and defence.
Mast cells are tissue-resident immune cells that play a key role in inflammation and allergy. Here we show that interaction of mast cells with antibody-targeted cells induces the polarized exocytosis of their granules resulting in a sustained exposure of effector enzymes,such as tryptase and chymase,at the cell-cell contact site. This previously unidentified mast cell effector mechanism,which we name the antibody-dependent degranulatory synapse (ADDS),is triggered by both IgE- and IgG-targeted cells. ADDSs take place within an area of cortical actin cytoskeleton clearance in the absence of microtubule organizing centre and Golgi apparatus repositioning towards the stimulating cell. Remarkably,IgG-mediated degranulatory synapses also occur upon contact with opsonized Toxoplasma gondii tachyzoites resulting in tryptase-dependent parasite death. Our results broaden current views of mast cell degranulation by revealing that human mast cells form degranulatory synapses with antibody-targeted cells and pathogens for dedicated secretion and defence.
View Publication
文献
Kubala SA et al. ( 2014)
Prostaglandins and Other Lipid Mediators 108 1--8
Pathogen induced chemo-attractant hepoxilin A3 drives neutrophils, but not eosinophils across epithelial barriers
Pathogen induced migration of neutrophils across mucosal epithelial barriers requires epithelial production of the chemotactic lipid mediator,hepoxilin A3 (HXA3). HXA3 is an eicosanoid derived from arachidonic acid. Although eosinophils are also capable of penetrating mucosal surfaces,eosinophilic infiltration occurs mainly during allergic processes whereas neutrophils dominate mucosal infection. Both neutrophils and eosinophils can respond to chemotactic gradients of certain eicosanoids,however,it is not known whether eosinophils respond to pathogen induced lipid mediators such as HXA3. In this study,neutrophils and eosinophils were isolated from human blood and placed on the basolateral side of polarized epithelial monolayers grown on permeable Transwell filters and challenged by various chemotactic gradients of distinct lipid mediators. We observed that both cell populations migrated across epithelial monolayers in response to a leukotriene B4 (LTB4) gradient,whereas only eosinophils migrated toward a prostaglandin D2 (PGD2) gradient. Interestingly,while pathogen induced neutrophil trans-epithelial migration was substantial,pathogen induced eosinophil trans-epithelial migration was not observed. Further,gradients of chemotactic lipids derived from pathogen infected epithelial cells known to be enriched for HXA3 as well as purified HXA3 drove significant numbers of neutrophils across epithelial barriers,whereas eosinophils failed to respond to these gradients. These data suggest that although the eicosanoid HXA3 serves as an important neutrophil chemo-attractant at mucosal surfaces during pathogenic infection,HXA3 does not appear to exhibit chemotactic activity toward eosinophils. ?? 2013 Elsevier Ltd. All rights reserved.
文献
Stadtmann A et al. (OCT 2013)
The Journal of Experimental Medicine 210 11 2171--80
The PSGL-1-L-selectin signaling complex regulates neutrophil adhesion under flow
Neutrophils are recruited from the blood to sites of inflammation,where they contribute to immune defense but may also cause tissue damage. During inflammation,neutrophils roll along the microvascular endothelium before arresting and transmigrating. Arrest requires conformational activation of the integrin lymphocyte function-associated antigen 1 (LFA-1),which can be induced by selectin engagement. Here,we demonstrate that a subset of P-selectin glycoprotein ligand-1 (PSGL-1) molecules is constitutively associated with L-selectin. Although this association does not require the known lectin-like interaction between L-selectin and PSGL-1,the signaling output is dependent on this interaction and the cytoplasmic tail of L-selectin. The PSGL-1-L-selectin complex signals through Src family kinases,ITAM domain-containing adaptor proteins,and other kinases to ultimately result in LFA-1 activation. The PSGL-1-L-selectin complex-induced signaling effects on neutrophil slow rolling and recruitment in vivo demonstrate the functional importance of this pathway. We conclude that this is a signaling complex specialized for sensing adhesion under flow.
View Publication
文献
Smalls-Mantey A et al. ( 2013)
PloS one 8 9 e74858
Comparative efficiency of HIV-1-infected T cell killing by NK cells, monocytes and neutrophils.
HIV-1 infected cells are eliminated in infected individuals by a variety of cellular mechanisms,the best characterized of which are cytotoxic T cell and NK cell-mediated killing. An additional antiviral mechanism is antibody-dependent cellular cytotoxicity. Here we use primary CD4(+) T cells infected with the BaL clone of HIV-1 as target cells and autologous NK cells,monocytes,and neutrophils as effector cells,to quantify the cytotoxicity mediated by the different effectors. This was carried out in the presence or absence of HIV-1-specific antiserum to assess antibody-dependent cellular cytotoxicity. We show that at the same effector to target ratio,NK cells and monocytes mediate similar levels of both antibody-dependent and antibody-independent killing of HIV-1-infected T cells. Neutrophils mediated significant antibody-dependent killing of targets,but were less effective than monocytes or NK cells. These data have implications for acquisition and control of HIV-1 in natural infection and in the context of vaccination.
View Publication
文献
Meenhuis A et al. (JUL 2011)
Blood 118 4 916--25
MiR-17/20/93/106 promote hematopoietic cell expansion by targeting sequestosome 1-regulated pathways in mice.
MicroRNAs (miRNAs) are pivotal for regulation of hematopoiesis but their critical targets remain largely unknown. Here,we show that ectopic expression of miR-17,-20,-93 and -106,all AAAGUGC seed-containing miRNAs,increases proliferation,colony outgrowth and replating capacity of myeloid progenitors and results in enhanced P-ERK levels. We found that these miRNAs are endogenously and abundantly expressed in myeloid progenitors and down-regulated in mature neutrophils. Quantitative proteomics identified sequestosome 1 (SQSTM1),an ubiquitin-binding protein and regulator of autophagy-mediated protein degradation,as a major target for these miRNAs in myeloid progenitors. In addition,we found increased expression of Sqstm1 transcripts during CSF3-induced neutrophil differentiation of 32D-CSF3R cells and an inverse correlation of SQSTM1 protein levels and miR-106 expression in AML samples. ShRNA-mediated silencing of Sqstm1 phenocopied the effects of ectopic miR-17/20/93/106 expression in hematopoietic progenitors in vitro and in mice. Further,SQSTM1 binds to the ligand-activated colony-stimulating factor 3 receptor (CSF3R) mainly in the late endosomal compartment,but not in LC3 positive autophagosomes. SQSTM1 regulates CSF3R stability and ligand-induced mitogen-activated protein kinase signaling. We demonstrate that AAAGUGC seed-containing miRNAs promote cell expansion,replating capacity and signaling in hematopoietic cells by interference with SQSTM1-regulated pathways.
View Publication
文献
Taylor D et al. (MAY 2011)
Journal of immunology (Baltimore,Md. : 1950) 186 10 5956--67
Prevention of bone marrow cell apoptosis and regulation of hematopoiesis by type I IFNs during systemic responses to pneumocystis lung infection.
We recently demonstrated that lack of type I IFN signaling (IFNAR knockout) in lymphocyte-deficient mice (IFrag(-/-)) results in bone marrow (BM) failure after Pneumocystis lung infection,whereas lymphocyte-deficient mice with intact IFNAR (RAG(-/-)) had normal hematopoiesis. In the current work,we performed studies to define further the mechanisms involved in the induction of BM failure in this system. BM chimera experiments revealed that IFNAR expression was required on BM-derived but not stroma-derived cells to prevent BM failure. Signals elicited after day 7 postinfection appeared critical in determining BM cell fate. We observed caspase-8- and caspase-9-mediated apoptotic cell death,beginning with neutrophils. Death of myeloid precursors was associated with secondary oxidative stress,and decreasing colony-forming activity in BM cell cultures. Treatment with N-acetylcysteine could slow the progression of,but not prevent,BM failure. Type I IFN signaling has previously been shown to expand the neutrophil life span and regulate the expression of some antiapoptotic factors. Quantitative RT-PCR demonstrated reduced mRNA abundance for the antiapoptotic factors BCL-2,IAP2,MCL-1,and others in BM cells from IFrag(-/-) compared with that in BM cells from RAG(-/-) mice at day 7. mRNA and protein for the proapoptotic cytokine TNF-α was increased,whereas mRNA for the growth factors G-CSF and GM-CSF was reduced. In vivo anti-TNF-α treatment improved precursor cell survival and activity in culture. Thus,we propose that lack of type I IFN signaling results in decreased resistance to inflammation-induced proapoptotic stressors and impaired replenishment by precursors after systemic responses to Pneumocystis lung infection. Our finding may have implications in understanding mechanisms underlying regenerative BM depression/failure during complex immune deficiencies such as AIDS.
View Publication
文献
Zou J et al. (MAY 2011)
Blood 117 21 5561--5572
Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting.
We have developed induced pluripotent stem cells (iPSCs) from a patient with X-linked chronic granulomatous disease (X-CGD),a defect of neutrophil microbicidal reactive oxygen species (ROS) generation resulting from gp91(phox) deficiency. We demonstrated that mature neutrophils differentiated from X-CGD iPSCs lack ROS production,reproducing the pathognomonic CGD cellular phenotype. Targeted gene transfer into iPSCs,with subsequent selection and full characterization to ensure no off-target changes,holds promise for correction of monogenic diseases without the insertional mutagenesis caused by multisite integration of viral or plasmid vectors. Zinc finger nuclease-mediated gene targeting of a single-copy gp91(phox) therapeutic minigene into one allele of the safe harbor" AAVS1 locus in X-CGD iPSCs without off-target inserts resulted in sustained expression of gp91(phox) and substantially restored neutrophil ROS production. Our findings demonstrate how precise gene targeting may be applied to correction of X-CGD using zinc finger nuclease and patient iPSCs."
View Publication
文献
Surdziel E et al. (APR 2011)
Blood 117 16 4338--48
Enforced expression of miR-125b affects myelopoiesis by targeting multiple signaling pathways.
MicroRNAs (miRNAs) are small,noncoding RNAs that regulate gene expression by sequence-specific targeting of multiple mRNAs. Although lineage-,maturation-,and disease-specific miRNA expression has been described,miRNA-dependent phenotypes and miRNA-regulated signaling in hematopoietic cells are largely unknown. Combining functional genomics,biochemical analysis,and unbiased and hypothesis-driven miRNA target prediction,we show that lentivirally over-expressed miR-125b blocks G-CSF-induced granulocytic differentiation and enables G-CSF-dependent proliferation of murine 32D cells. In primary lineage-negative cells,miR-125b over-expression enhances colony-formation in vitro and promotes myelopoiesis in mouse bone marrow chimeras. We identified Stat3 and confirmed Bak1 as miR-125b target genes with approximately 30% and 50% reduction in protein expression,respectively. However,gene-specific RNAi reveals that this reduction,alone and in combination,is not sufficient to block G-CSF-dependent differentiation. STAT3 protein expression,DNA-binding,and transcriptional activity but not induction of tyrosine-phosphorylation and nuclear translocation are reduced upon enforced miR-125b expression,indicating miR-125b-mediated reduction of one or more STAT3 cofactors. Indeed,we identified c-Jun and Jund as potential miR-125b targets and demonstrated reduced protein expression in 32D/miR-125b cells. Interestingly,gene-specific silencing of JUND but not c-JUN partially mimics the miR-125b over-expression phenotype. These data demonstrate coordinated regulation of several signaling pathways by miR-125b linked to distinct phenotypes in myeloid cells.
View Publication
文献
Nanua S et al. (MAR 2011)
Blood 117 13 3539--47
Activation of the unfolded protein response is associated with impaired granulopoiesis in transgenic mice expressing mutant Elane.
Severe congenital neutropenia (SCN) is an inborn disorder of granulopoiesis that in many cases is caused by mutations of the ELANE gene,which encodes neutrophil elastase (NE). Recent data suggest a model in which ELANE mutations result in NE protein misfolding,induction of endoplasmic reticulum (ER) stress,activation of the unfolded protein response (UPR),and ultimately a block in granulocytic differentiation. To test this model,we generated transgenic mice carrying a targeted mutation of Elane (G193X) reproducing a mutation found in SCN. The G193X Elane allele produces a truncated NE protein that is rapidly degraded. Granulocytic precursors from G193X Elane mice,though without significant basal UPR activation,are sensitive to chemical induction of ER stress. Basal and stress granulopoiesis after myeloablative therapy are normal in these mice. Moreover,inaction of protein kinase RNA-like ER kinase (Perk),one of the major sensors of ER stress,either alone or in combination with G193X Elane,had no effect on basal granulopoiesis. However,inhibition of the ER-associated degradation (ERAD) pathway using a proteosome inhibitor resulted in marked neutropenia in G193X Elane. The selective sensitivity of G913X Elane granulocytic cells to ER stress provides new and strong support for the UPR model of disease patho-genesis in SCN.
View Publication