技术资料
-
(Jan 2025) Cell Regeneration 14 3Neuroligin-3 R451C induces gain-of-function gene expression in astroglia in an astroglia-enriched brain organoid model
Astroglia are integral to brain development and the emergence of neurodevelopmental disorders. However,studying the pathophysiology of human astroglia using brain organoid models has been hindered by inefficient astrogliogenesis. In this study,we introduce a robust method for generating astroglia-enriched organoids through BMP4 treatment during the neural differentiation phase of organoid development. Our RNA sequencing analysis reveals that astroglia developed within these organoids exhibit advanced developmental characteristics and enhanced synaptic functions compared to those grown under traditional two-dimensional conditions,particularly highlighted by increased neurexin (NRXN)-neuroligin (NLGN) signaling. Cell adhesion molecules,such as NRXN and NLGN,are essential in regulating interactions between astroglia and neurons. We further discovered that brain organoids derived from human embryonic stem cells (hESCs) harboring the autism-associated NLGN3 R451C mutation exhibit increased astrogliogenesis. Notably,the NLGN3 R451C astroglia demonstrate enhanced branching,indicating a more intricate morphology. Interestingly,our RNA sequencing data suggest that these mutant astroglia significantly upregulate pathways that support neural functions when compared to isogenic wild-type astroglia. Our findings establish a novel astroglia-enriched organoid model,offering a valuable platform for probing the roles of human astroglia in brain development and related disorders.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13619-024-00219-5. View Publication -
(May 2024) Cell Death & Disease 15 5Biallelic variants in
CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade,an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders,the role of CSMD1 in neurodevelopmental disorders is unclear. Through international variant sharing,we identified inherited biallelic CSMD1 variants in eight individuals from six families of diverse ancestry who present with global developmental delay,intellectual disability,microcephaly,and polymicrogyria. We modeled CSMD1 loss-of-function (LOF) pathogenesis in early-stage forebrain organoids differentiated from CSMD1 knockout human embryonic stem cells (hESCs). We show that CSMD1 is necessary for neuroepithelial cytoarchitecture and synchronous differentiation. In summary,we identified a critical role for CSMD1 in brain development and biallelic CSMD1 variants as the molecular basis of a previously undefined neurodevelopmental disorder. View Publication -
(Apr 2024) iScience 27 5Long noncoding RNAs heat shock RNA omega nucleates TBPH and promotes intestinal stem cell differentiation upon heat shock
SummaryIn Drosophila,long noncoding RNA Hsr? rapidly assembles membraneless organelle omega speckles under heat shock with unknown biological function. Here,we identified the distribution of omega speckles in multiple tissues of adult Drosophila melanogaster and found that they were selectively distributed in differentiated enterocytes but not in the intestinal stem cells of the midgut. We mimicked the high expression level of Hsr? via overexpression or intense heat shock and demonstrated that the assembly of omega speckles nucleates TBPH for the induction of ISC differentiation. Additionally,we found that heat shock stress promoted cell differentiation,which is conserved in mammalian cells through paraspeckles,resulting in large puncta of TDP-43 (a homolog of TBPH) with less mobility and the differentiation of human induced pluripotent stem cells. Overall,our findings confirm the role of Hsr? and omega speckles in the development of intestinal cells and provide new prospects for the establishment of stem cell differentiation strategies. Graphical abstract Highlights•LncRNA Hsr? is differentially expressed in different cell types of fly midguts•Omega speckles nucleate TPBH and promote the differentiation of ISCs to ECs•Heat shock treatment induces the assembly of omega speckles and paraspeckles•Heat shock treatment accelerates the differentiation of fly midguts and human iPSCs Molecular biology; Cell biology; Developmental biology View Publication -
(Jun 2025) Bio-protocol 15 12A Hybrid 2D/3D Approach for Neural Differentiation Into Telencephalic Organoids and Efficient Modulation of FGF8 Signaling
Human brain development relies on a finely tuned balance between the proliferation and differentiation of neural progenitor cells,followed by the migration,differentiation,and connectivity of post-mitotic neurons with region-specific identities. These processes are orchestrated by gradients of morphogens,such as FGF8. Disruption of this developmental balance can lead to brain malformations,which underlie a range of complex neurodevelopmental disorders,including epilepsy,autism,and intellectual disabilities. Studying the early stages of human brain development,whether under normal or pathological conditions,remains challenging due to ethical and technical limitations inherent to working with human fetal tissue. Recently,human brain organoids have emerged as a powerful in vitro alternative,allowing researchers to model key aspects of early brain development while circumventing many of these constraints. Unlike traditional 2D cultures,where neural progenitors and neurons are grown on flat surfaces,3D organoids form floating self-organizing aggregates that better replicate the cellular diversity and tissue architecture of the developing brain. However,3D organoid protocols often suffer from significant variability between batches and individual organoids. Furthermore,few existing protocols directly manipulate key morphogen signaling pathways or provide detailed analyses of the resulting effects on regional brain patterning.• To address these limitations,we developed a hybrid 2D/3D approach for the rapid and efficient induction of telencephalic organoids that recapitulate major steps of anterior brain development. Starting from human induced pluripotent stem cells (hiPSCs),our protocol begins with 2D neural induction using small-molecule inhibitors to achieve fast and homogenous production of neural progenitors (NPs). After dissociation,NPs are reaggregated in Matrigel droplets and cultured in spinning mini-bioreactors,where they self-organize into neural rosettes and neuroepithelial structures,surrounded by differentiating neurons. Activation of the FGF signaling pathway through the controlled addition of FGF8 to the culture medium will modulate regional identity within developing organoids,leading to the formation of distinct co-developing domains within a single organoid. Our protocol combines the speed and reproducibility of 2D induction with the structural and cellular complexity of 3D telencephalic organoids. The ability to manipulate signaling pathways provides an additional opportunity to further increase system complexity,enabling the simultaneous development of multiple distinct brain regions within a single organoid. This versatile system facilitates the study of key cellular and molecular mechanisms driving early human brain development across both telencephalic and non-telencephalic areas. Key features • This protocol builds on the method established by Chambers et al. [1] for generating 2D neural progenitors,followed by dissociation and reaggregation into 3D brain organoids.• For optimal growth and maturation,telencephalic organoids are cultured in spinning mini-bioreactors [2] or on orbital shakers.• The protocol enables the generation of telencephalic neural progenitors in 10 days and produces 3D telencephalic organoids containing neocortical neurons within one month of culture.• Addition of morphogens in the culture medium (example: FGF8) enhances cellular heterogeneity,promoting the emergence of distinct brain domains within a single organoid. View Publication -
(Mar 2025) Molecular Neurodegeneration 20 2A versatile mouse model to advance human microglia transplantation research in neurodegenerative diseases
BackgroundRecent studies highlight the critical role of microglia in neurodegenerative disorders,and emphasize the need for humanized models to accurately study microglial responses. Human-mouse microglia xenotransplantation models are a valuable platform for functional studies and for testing therapeutic approaches,yet currently those models are only available for academic research. This hampers their implementation for the development and testing of medication that targets human microglia.MethodsWe developed the hCSF1Bdes mouse line,which is suitable as a new transplantation model and available to be crossed to any disease model of interest. The hCSF1Bdes model created by CRISPR gene editing is RAG2 deficient and expresses human CSF1. Additionally,we crossed this model with two humanized App KI mice,the AppHu and the AppSAA. Flow cytometry,immunohistochemistry and bulk sequencing was used to study the response of microglia in the context of Alzheimer’s disease.ResultsOur results demonstrate the successful transplantation of iPSC-derived human microglia into the brains of hCSF1Bdes mice without triggering a NK-driven immune response. Furthermore,we confirmed the multipronged response of microglia in the context of Alzheimer’s disease. The hCSF1Bdes and the crosses with the Alzheimer’s disease knock-in model AppSAA and the humanized App knock-in control mice,AppHu are deposited with EMMA and fully accessible to the research community.ConclusionThe hCSF1Bdes mouse is available for both non-profit and for-profit organisations,facilitating the use of the xenotransplantation paradigm for human microglia to study complex human disease.Supplementary InformationThe online version contains supplementary material available at 10.1186/s13024-025-00823-2. View Publication -
(Apr 2025) HemaSphere 9 4H1?0 is a specific mediator of the repressive ETV6::RUNX1 transcriptional landscape in preleukemia and B cell acute lymphoblastic leukemia
Abstract ETV6::RUNX1,the most common oncogenic fusion in pediatric B cell precursor acute lymphoblastic leukemia (BCP?ALL),induces a clinically silent preleukemic state that can persist in carriers for over a decade and may progress to overt leukemia upon acquisition of secondary lesions. The mechanisms contributing to quiescence of ETV6::RUNX1+ preleukemic cells still remain elusive. In this study,we identify linker histone H1?0 as a critical mediator of the ETV6::RUNX1+ preleukemic state by employing human ?induced pluripotent stem cell (hiPSC) models engineered by using CRISPR/Cas9 gene editing. Global gene expression analysis revealed upregulation of H1?0 in ETV6::RUNX1+ hiPSCs that was preserved upon hematopoietic differentiation. Moreover,whole transcriptome data of 1,727 leukemia patient samples showed significantly elevated H1?0 levels in ETV6::RUNX1+?BCP?ALL compared to other leukemia entities. Using dual?luciferase promoter assays,we show that ETV6::RUNX1 induces H1?0 promoter activity. We further demonstrate that depletion of H1?0 specifically inhibits ETV6::RUNX1 signature genes,including RAG1 and EPOR. Single?cell sequencing showed that H1?0 is highly expressed in quiescent hematopoietic cells. Importantly,H1?0 protein levels correspond to susceptibility of BCP?ALL cells towards histone deacetylase inhibitors (HDACis) and combinatorial treatment using the H1?0?inducing HDACi Quisinostat showed promising synergism with established chemotherapeutic drugs. Taken together,our data identify H1?0 as a key regulator of the ETV6::RUNX1+ transcriptome and indicate that the addition of Quisinostat may be beneficial to target non?responsive or relapsing ETV6::RUNX1+?BCP?ALL. View Publication -
(Jan 2025) Nature Communications 16Invasion of glioma cells through confined space requires membrane tension regulation and mechano-electrical coupling via Plexin-B2
Glioblastoma (GBM) is a malignant brain tumor with diffuse infiltration. Here,we demonstrate how GBM cells usurp guidance receptor Plexin-B2 for confined migration through restricted space. Using live-cell imaging to track GBM cells negotiating microchannels,we reveal endocytic vesicle accumulation at cell front and filamentous actin assembly at cell rear in a polarized manner. These processes are interconnected and require Plexin-B2 signaling. We further show that Plexin-B2 governs membrane tension and other membrane features such as endocytosis,phospholipid composition,and inner leaflet surface charge,thus providing biophysical mechanisms by which Plexin-B2 promotes GBM invasion. Together,our studies unveil how GBM cells regulate membrane tension and mechano-electrical coupling to adapt to physical constraints and achieve polarized confined migration. The biomechanical mechanisms enabling the invasive growth of brain tumors remain opaque. Here,Junqueira Alves et al. reveal that the guidance receptor Plexin-B2 controls membrane tension,facilitating confined migration of brain tumor cells. View Publication -
(Jun 2025) Cell Reports Methods 5 4A cost- and time-efficient method for high-throughput cryoprocessing and tissue analysis using multiplexed tissue molds
SummaryCryosectioning remains the gold standard for antibody and transcriptomic/in situ hybridization tissue analysis. However,tissue processing is time-consuming and costly,limiting routine and diagnostic use. Currently,no commercially available protocols or products exist for multiplexing this process. Here,we introduce multiplexed tissue molds (MTMs) that enable high-throughput cryoprocessing—cutting costs and workload by up to 96% while permitting the processing of tissues of various sizes and origins. We demonstrate compatibility with heterogeneous tissues by processing 19 different adult mouse tissues in parallel. Furthermore,we process up to ?110 neural organoids of different ages and sizes simultaneously and assess their neural differentiation marker expression. MTMs allow sectioning-based tissue analysis when labor,time,and cost are limiting factors. MTMs could be used to compare high specimen numbers in histopathological settings,organism-wide antigen and antibody targeting studies,high-throughput tissue screens,and defined tissue section positioning for,e.g.,spatial transcriptomics experiments. Graphical abstract Highlights•Multiplexed tissue molds (MTMs) drastically upscale cryosectioning procedures•MTMs can simultaneously accommodate up to 19 mouse organs and ?110 cerebral organoids•MTMs reduce analysis costs and processing times of tissues by up to 96%•MTMs could be used to reduce diagnostic costs and for spatial transcriptomics MotivationEfficient cryosectioning remains a critical yet labor- and cost-intensive step for immunohistochemistry and in situ hybridization,limiting routine diagnostic and research applications. The increasing demand for high-throughput tissue analysis—driven by advances in organoid and three-dimensional (3D) culture systems and tissue analysis for diagnostics—necessitates methods capable of processing numerous heterogeneous samples simultaneously. Current protocols lack multiplexing capabilities,leading to variability and extended processing times. Our work introduces multiplexed tissue molds (MTMs),a scalable solution that drastically reduces costs and labor by up to 96% while maintaining tissue integrity and consistency,thereby enabling large-scale (>100 tissues) comparative analyses and enhanced experimental reproducibility as well as access to tissue analysis,where cost is a restrictive factor. Reumann et al. develop multiplexed tissue molds (MTMs),which allow upscaling of tissue processing (up to 19 mouse organs or ?110 cerebral organoids simultaneously) while reducing workload and associated analysis costs by up to 96%. MTMs allow cryosection-based tissue analysis when labor,time,and cost are limiting factors and could be used for patient sample analysis as well as spatial transcriptomics approaches. View Publication -
(Apr 2024) Frontiers in Cell and Developmental Biology 12 2Airway basal cells from human-induced pluripotent stem cells: a new frontier in cystic fibrosis research
Human-induced airway basal cells (hiBCs) derived from human-induced pluripotent stem cells (hiPSCs) offer a promising cell model for studying lung diseases,regenerative medicine,and developing new gene therapy methods. We analyzed existing differentiation protocols and proposed our own protocol for obtaining hiBCs,which involves step-by-step differentiation of hiPSCs into definitive endoderm,anterior foregut endoderm,NKX2.1+ lung progenitors,and cultivation on basal cell medium with subsequent cell sorting using the surface marker CD271 (NGFR). We derived hiBCs from two healthy cell lines and three cell lines with cystic fibrosis (CF). The obtained hiBCs,expressing basal cell markers (NGFR,KRT5,and TP63),could differentiate into lung organoids (LOs). We demonstrated that LOs derived from hiBCs can assess cystic fibrosis transmembrane conductance regulator (CFTR) channel function using the forskolin-induced swelling (FIS) assay. We also carried out non-viral (electroporation) and viral (recombinant adeno-associated virus (rAAV)) serotypes 6 and 9 and recombinant adenovirus (rAdV) serotype 5 transgene delivery to hiBCs and showed that rAAV serotype 6 is most effective against hiBCs,potentially applicable for gene therapy research. View Publication -
(May 2024) Cell Reports Medicine 5 5The adipose-neural axis is involved in epicardial adipose tissue-related cardiac arrhythmias
SummaryDysfunction of the sympathetic nervous system and increased epicardial adipose tissue (EAT) have been independently associated with the occurrence of cardiac arrhythmia. However,their exact roles in triggering arrhythmia remain elusive. Here,using an in vitro coculture system with sympathetic neurons,cardiomyocytes,and adipocytes,we show that adipocyte-derived leptin activates sympathetic neurons and increases the release of neuropeptide Y (NPY),which in turn triggers arrhythmia in cardiomyocytes by interacting with the Y1 receptor (Y1R) and subsequently enhancing the activity of the Na+/Ca2+ exchanger (NCX) and calcium/calmodulin-dependent protein kinase II (CaMKII). The arrhythmic phenotype can be partially blocked by a leptin neutralizing antibody or an inhibitor of Y1R,NCX,or CaMKII. Moreover,increased EAT thickness and leptin/NPY blood levels are detected in atrial fibrillation patients compared with the control group. Our study provides robust evidence that the adipose-neural axis contributes to arrhythmogenesis and represents a potential target for treating arrhythmia. Graphical abstract Highlights•Stem cell-based coculture model can simulate the pathogenesis of cardiac arrhythmia•The adipose-neural axis plays critical roles in cardiac arrhythmias•Leptin,NPY/Y1R,NCX,and CaMKII are potential intervention targets for arrhythmia•Increased EAT thickness and leptin/NPY levels are detected in CS blood of AF patients Fan et al. establish a stem cell-based coculture model to mimic the in vivo cardiac microenvironment and elucidate that the adipose-neural interaction plays a critical role in epicardial adipose tissue-related cardiac arrhythmia through leptin-NPY axis. Their results may provide potential therapeutic targets for treating arrhythmia. View Publication -
(Jun 2025) Genes & Development 39 11-12IRX2 and NPTX1 differential regulation of ?-catenin underlies MEK-mediated proliferation in human neuroglial cells
In this study,Chen et al. describe two independent mechanisms that control ?-catenin levels in neuroglial cells and drive their proliferation. The work provides mechanistic insight into the impact of MEK activation resulting from the biallelic loss of NF1 or BRAF rearrangement in pediatric gliomas. The two major genomic alterations in pediatric pilocytic astrocytoma (PA) are NF1 loss and KIAA1549:BRAF rearrangement. Although these molecular changes result in increased MEK activity and tumor growth,it is not clear exactly how MEK controls human neuroglial cell proliferation. Leveraging human-induced pluripotent stem cells harboring these PA-associated alterations,we used a combination of genetic and pharmacological approaches to demonstrate that MEK-regulated cell growth is mediated by ?-catenin through independent mechanisms involving IRX2 control of CTNNB1 transcription and NPTX1 stabilization of ?-catenin protein levels. These results provide new mechanistic insights into MEK regulation of human brain cell function. View Publication -
(Dec 2024) International Journal of Molecular Sciences 26 1Optimized Prime Editing of Human Induced Pluripotent Stem Cells to Efficiently Generate Isogenic Models of Mendelian Diseases
Prime editing (PE) is a CRISPR-based tool for genome engineering that can be applied to generate human induced pluripotent stem cell (hiPSC)-based disease models. PE technology safely introduces point mutations,small insertions,and deletions (indels) into the genome. It uses a Cas9-nickase (nCas9) fused to a reverse transcriptase (RT) as an editor and a PE guide RNA (pegRNA),which introduces the desired edit with great precision without creating double-strand breaks (DSBs). PE leads to minimal off-targets or indels when introducing single-strand breaks (SSB) in the DNA. Low efficiency can be an obstacle to its use in hiPSCs,especially when the genetic context precludes the screening of multiple pegRNAs,and other strategies must be employed to achieve the desired edit. We developed a PE platform to efficiently generate isogenic models of Mendelian disorders. We introduced the c.25G>A (p.V9M) mutation in the NMNAT1 gene with over 25% efficiency by optimizing the PE workflow. Using our optimized system,we generated other isogenic models of inherited retinal diseases (IRDs),including the c.1481C>T (p.T494M) mutation in PRPF3 and the c.6926A>C (p.H2309P) mutation in PRPF8. We modified several determinants of the hiPSC PE procedure,such as plasmid concentrations,PE component ratios,and delivery method settings,showing that our improved workflow increased the hiPSC editing efficiency. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
产品类型
- 仪器及软件
Show More
Show Less
研究领域
- HIV 85 项目
- HLA 60 项目
- 上皮细胞生物学 270 项目
- 上皮细胞研究 3 项目
- 免疫 1034 项目
- 内皮细胞研究 1 项目
- 呼吸系统研究 38 项目
- 嵌合体 30 项目
- 干细胞生物学 2919 项目
- 感染性疾病(传染病) 7 项目
- 抗体制备 6 项目
- 新陈代谢 4 项目
- 杂交瘤制备 3 项目
- 疾病建模 207 项目
- 癌症 7 项目
- 神经科学 664 项目
- 移植研究 104 项目
- 类器官 156 项目
- 细胞外囊泡研究 8 项目
- 细胞治疗开发 18 项目
- 细胞疗法开发 101 项目
- 细胞系制备 187 项目
- 脐带血库 72 项目
- 药物发现和毒理检测 379 项目
- 血管生成细胞研究 1 项目
- 传染病 54 项目
- 内皮细胞生物学 8 项目
- 杂交瘤生成 18 项目
- 癌症研究 710 项目
- 血管生成细胞研究 57 项目
Show More
Show Less
产品系列
- ALDECOUNT 14 项目
- CellPore 10 项目
- CellShield 1 项目
- CellSTACK 1 项目
- EasyPick 1 项目
- ELISA 3 项目
- ErythroClear 3 项目
- ES-Cult 81 项目
- Falcon 1 项目
- GloCell 1 项目
- GyneCult 1 项目
- HetaSep 1 项目
- iCell 14 项目
- Matrigel 2 项目
- MegaCult 36 项目
- ProstaCult 1 项目
- STEMprep 12 项目
- ALDEFLUOR 238 项目
- AggreWell 85 项目
- ArciTect 37 项目
- BloodStor 3 项目
- BrainPhys 64 项目
- CellAdhere 2 项目
- ClonaCell 112 项目
- CloneR 8 项目
- CryoStor 75 项目
- EC-Cult 2 项目
- EasySep 895 项目
- EpiCult 21 项目
- HemaTox 4 项目
- HepatiCult 25 项目
- Hypothermosol 1 项目
- ImmunoCult 32 项目
- IntestiCult 186 项目
- Lymphoprep 10 项目
- MammoCult 45 项目
- MesenCult 154 项目
- MethoCult 507 项目
- MyeloCult 65 项目
- MyoCult 10 项目
- NaïveCult 1 项目
- NeuroCult 372 项目
- NeuroFluor 3 项目
- PBS-MINI 6 项目
- PancreaCult 11 项目
- PneumaCult 87 项目
- RSeT 13 项目
- ReLeSR 8 项目
- RoboSep 49 项目
- RosetteSep 252 项目
- STEMdiff 165 项目
- STEMscript 1 项目
- STEMvision 7 项目
- SepMate 29 项目
- SmartDish 1 项目
- StemSpan 252 项目
- TeSR 1547 项目
- ThawSTAR 4 项目
- mFreSR 9 项目
- Highway1 7 项目
Show More
Show Less
资源类别
物种
- 小鼠 1 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号