MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations.
How mutations in the microtubule-associated protein tau (MAPT) gene cause frontotemporal dementia (FTD) remains poorly understood. We generated and characterized multiple induced pluripotent stem cell (iPSC) lines from patients with MAPT IVS10+16 and tau-A152T mutations and a control subject. In cortical neurons differentiated from these and other published iPSC lines,we found that MAPT mutations do not affect neuronal differentiation but increase the 4R/3R tau ratio. Patient neurons had significantly higher levels of MMP-9 and MMP-2 and were more sensitive to stress-induced cell death. Inhibitors of MMP-9/MMP-2 protected patient neurons from stress-induced cell death and recombinant MMP-9/MMP-2 were sufficient to decrease neuronal survival. In tau-A152T neurons,inhibition of the ERK pathway decreased MMP-9 expression. Moreover,ectopic expression of 4R but not 3R tau-A152T in HEK293 cells increased MMP-9 expression and ERK phosphorylation. These findings provide insights into the molecular pathogenesis of FTD and suggest a potential therapeutic target for FTD with MAPT mutations.
View Publication
Li W et al. (JAN 2012)
Human Molecular Genetics 21 1 32--45
Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes
Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease,as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here,we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)],trisomy 8 (Warkany syndrome 2),trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome),using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover,they could be transformed into neural-like,hepatocyte-like and heart-like cells,but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade,but rather involves other abnormalities including impaired placentation.
View Publication
Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons.
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions,it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions,however,genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here,we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment,we identified a novel gene that appears to contribute to AN pathophysiology,TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions,especially anxiety disorders,we believe this report is its first association with AN. Moreover,our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement,and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease.
View Publication
Chen J et al. ( 2016)
Stem cell research & therapy 7 1 2
Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets.
BACKGROUND: Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently,there is no effective treatment for this group of diseases. However,stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells,induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells,and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition,patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy.backslashnbackslashnMETHODS: In this study,iPSCs were obtained from patients carrying an OPA1 mutation (OPA1 (+/-) -iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs,which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1.backslashnbackslashnRESULTS: Mutant OPA1 (+/-) -iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However,with the addition of neural induction medium,Noggin,or estrogen,OPA1 (+/-) -iPSC differentiation into RGCs was promoted.backslashnbackslashnCONCLUSIONS: Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy,and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy.
View Publication
Lang J et al. (SEP 2016)
Stem cell reports 7 3 341--354
Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells.
The development of dengue antivirals and vaccine has been hampered by the incomplete understanding of molecular mechanisms of dengue virus (DENV) infection and pathology,partly due to the limited suitable cell culture or animal models that can capture the comprehensive cellular changes induced by DENV. In this study,we differentiated human pluripotent stem cells (hPSCs) into hepatocytes,one of the target cells of DENV,to investigate various aspects of DENV-hepatocyte interaction. hPSC-derived hepatocyte-like cells (HLCs) supported persistent and productive DENV infection. The activation of interferon pathways by DENV protected bystander cells from infection and protected the infected cells from massive apoptosis. Furthermore,DENV infection activated the NF-$$B pathway,which led to production of proinflammatory cytokines and downregulated many liver-specific genes such as albumin and coagulation factor V. Our study demonstrates the utility of hPSC-derived hepatocytes as an in vitro model for DENV infection and reveals important aspects of DENV-host interactions.
View Publication
Maillet A et al. ( 2016)
Scientific reports 6 April 25333
Modeling Doxorubicin-Induced Cardiotoxicity in Human Pluripotent Stem Cell Derived-Cardiomyocytes.
Doxorubicin is a highly efficacious anti-cancer drug but causes cardiotoxicity in many patients. The mechanisms of doxorubicin-induced cardiotoxicity (DIC) remain incompletely understood. We investigated the characteristics and molecular mechanisms of DIC in human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). We found that doxorubicin causes dose-dependent increases in apoptotic and necrotic cell death,reactive oxygen species production,mitochondrial dysfunction and increased intracellular calcium concentration. We characterized genome-wide changes in gene expression caused by doxorubicin using RNA-seq,as well as electrophysiological abnormalities caused by doxorubicin with multi-electrode array technology. Finally,we show that CRISPR-Cas9-mediated disruption of TOP2B,a gene implicated in DIC in mouse studies,significantly reduces the sensitivity of hPSC-CMs to doxorubicin-induced double stranded DNA breaks and cell death. These data establish a human cellular model of DIC that recapitulates many of the cardinal features of this adverse drug reaction and could enable screening for protective agents against DIC as well as assessment of genetic variants involved in doxorubicin response.
View Publication
Joseph R et al. (JUL 2016)
Investigative ophthalmology & visual science 57 8 3685--3697
Modeling Keratoconus Using Induced Pluripotent Stem Cells.
PURPOSE To model keratoconus (KC) using induced pluripotent stem cells (iPSC) generated from fibroblasts of both KC and normal human corneal stroma by a viral method. METHODS Both normal and KC corneal fibroblasts from four human donors were reprogramed directly by delivering reprogramming factors in a single virus using 2A self-cleaving" peptides�
View Publication
Almeida S et al. (SEP 2013)
Acta Neuropathologica 126 3 385--399
Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons
The recently identified GGGGCC repeat expansion in the noncoding region of C9ORF72 is the most common pathogenic mutation in patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). We generated a human neuronal model and investigated the pathological phenotypes of human neurons containing GGGGCC repeat expansions. Skin biopsies were obtained from two subjects who had textgreater1,000 GGGGCC repeats in C9ORF72 and their respective fibroblasts were used to generate multiple induced pluripotent stem cell (iPSC) lines. After extensive characterization,two iPSC lines from each subject were selected,differentiated into postmitotic neurons,and compared with control neurons to identify disease-relevant phenotypes. Expanded GGGGCC repeats exhibit instability during reprogramming and neuronal differentiation of iPSCs. RNA foci containing GGGGCC repeats were present in some iPSCs,iPSC-derived human neurons and primary fibroblasts. The percentage of cells with foci and the number of foci per cell appeared to be determined not simply by repeat length but also by other factors. These RNA foci do not seem to sequester several major RNA-binding proteins. Moreover,repeat-associated non-ATG (RAN) translation products were detected in human neurons with GGGGCC repeat expansions and these neurons showed significantly elevated p62 levels and increased sensitivity to cellular stress induced by autophagy inhibitors. Our findings demonstrate that key neuropathological features of FTD/ALS with GGGGCC repeat expansions can be recapitulated in iPSC-derived human neurons and also suggest that compromised autophagy function may represent a novel underlying pathogenic mechanism.
View Publication