Jain AK et al. (JAN 2012)
PLoS Biology 10 2 e1001268
P53 regulates cell cycle and micrornas to promote differentiation of human embryonic stem cells
Multiple studies show that tumor suppressor p53 is a barrier to dedifferentiation; whether this is strictly due to repression of proliferation remains a subject of debate. Here,we show that p53 plays an active role in promoting differentiation of human embryonic stem cells (hESCs) and opposing self-renewal by regulation of specific target genes and microRNAs. In contrast to mouse embryonic stem cells,p53 in hESCs is maintained at low levels in the nucleus,albeit in a deacetylated,inactive state. In response to retinoic acid,CBP/p300 acetylates p53 at lysine 373,which leads to dissociation from E3-ubiquitin ligases HDM2 and TRIM24. Stabilized p53 binds CDKN1A to establish a G(1) phase of cell cycle without activation of cell death pathways. In parallel,p53 activates expression of miR-34a and miR-145,which in turn repress stem cell factors OCT4,KLF4,LIN28A,and SOX2 and prevent backsliding to pluripotency. Induction of p53 levels is a key step: RNA-interference-mediated knockdown of p53 delays differentiation,whereas depletion of negative regulators of p53 or ectopic expression of p53 yields spontaneous differentiation of hESCs,independently of retinoic acid. Ectopic expression of p53R175H,a mutated form of p53 that does not bind DNA or regulate transcription,failed to induce differentiation. These studies underscore the importance of a p53-regulated network in determining the human stem cell state.
View Publication
Setoguchi K et al. (APR 2016)
Journal of Molecular Biology 428 7 1465--1475
P53 Regulates Rapid Apoptosis in Human Pluripotent Stem Cells
Human pluripotent stem cells (hPSCs) are sensitive to DNA damage and undergo rapid apoptosis compared to their differentiated progeny cells. Here,we explore the underlying mechanisms for the increased apoptotic sensitivity of hPSCs that helps to determine pluripotent stem cell fate. Apoptosis was induced by exposure to actinomycin D,etoposide,or tunicamycin,with each agent triggering a distinct apoptotic pathway. We show that hPSCs are more sensitive to all three types of apoptosis induction than are lineage-non-specific,retinoic-acid-differentiated hPSCs. Also,Bax activation and pro-apoptotic mitochondrial intermembrane space protein release,which are required to initiate the mitochondria-mediated apoptosis pathway,are more rapid in hPSCs than in retinoic-acid-differentiated hPSCs. Surprisingly,Bak and not Bax is essential for actinomycin-D-induced apoptosis in human embryonic stem cells. Finally,P53 is degraded rapidly in an ubiquitin-proteasome-dependent pathway in hPSCs at steady state but quickly accumulates and induces apoptosis when Mdm2 function is impaired. Rapid degradation of P53 ensures the survival of healthy hPSCs but avails these cells for immediate apoptosis upon cellular damage by P53 stabilization. Altogether,we provide an underlying,interconnected molecular mechanism that primes hPSCs for quick clearance by apoptosis to eliminate hPSCs with unrepaired genome alterations and preserves organismal genomic integrity during the early critical stages of human embryonic development.
View Publication
Asai A et al. (MAR 2017)
Development (Cambridge,England) 144 6 1056--1064
Paracrine signals regulate human liver organoid maturation from induced pluripotent stem cells.
A self-organizing organoid model provides a new approach to study the mechanism of human liver organogenesis. Previous animal models documented that simultaneous paracrine signaling and cell-to-cell surface contact regulate hepatocyte differentiation. To dissect the relative contributions of the paracrine effects,we first established a liver organoid using human induced pluripotent stem cells (iPSCs),mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) as previously reported. Time-lapse imaging showed that hepatic-specified endoderm iPSCs (HE-iPSCs) self-assembled into three-dimensional organoids,resulting in hepatic gene induction. Progressive differentiation was demonstrated by hepatic protein production after in vivo organoid transplantation. To assess the paracrine contributions,we employed a Transwell system in which HE-iPSCs were separately co-cultured with MSCs and/or HUVECs. Although the three-dimensional structure did not form,their soluble factors induced a hepatocyte-like phenotype in HE-iPSCs,resulting in the expression of bile salt export pump. In conclusion,the mesoderm-derived paracrine signals promote hepatocyte maturation in liver organoids,but organoid self-organization requires cell-to-cell surface contact. Our in vitro model demonstrates a novel approach to identify developmental paracrine signals regulating the differentiation of human hepatocytes.
View Publication
Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions.
This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol,passaging one six-well or 10-cm plate of cells takes about 6-7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization,centrifugation or drug treatment. It also allows for higher throughput,requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation,colony expansion,cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion,and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages,this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.
View Publication
Nayak RC et al. (AUG 2015)
The Journal of clinical investigation 125 8 3103--3116
Pathogenesis of ELANE-mutant severe neutropenia revealed by induced pluripotent stem cells.
Severe congenital neutropenia (SCN) is often associated with inherited heterozygous point mutations in ELANE,which encodes neutrophil elastase (NE). However,a lack of appropriate models to recapitulate SCN has substantially hampered the understanding of the genetic etiology and pathobiology of this disease. To this end,we generated both normal and SCN patient-derived induced pluripotent stem cells (iPSCs),and performed genome editing and differentiation protocols that recapitulate the major features of granulopoiesis. Pathogenesis of ELANE point mutations was the result of promyelocyte death and differentiation arrest,and was associated with NE mislocalization and activation of the unfolded protein response/ER stress (UPR/ER stress). Similarly,high-dose G-CSF (or downstream signaling through AKT/BCL2) rescues the dysgranulopoietic defect in SCN patient-derived iPSCs through C/EBP$$-dependent emergency granulopoiesis. In contrast,sivelestat,an NE-specific small-molecule inhibitor,corrected dysgranulopoiesis by restoring normal intracellular NE localization in primary granules; ameliorating UPR/ER stress; increasing expression of CEBPA,but not CEBPB; and promoting promyelocyte survival and differentiation. Together,these data suggest that SCN disease pathogenesis includes NE mislocalization,which in turn triggers dysfunctional survival signaling and UPR/ER stress. This paradigm has the potential to be clinically exploited to achieve therapeutic responses using lower doses of G-CSF combined with targeting to correct NE mislocalization.
View Publication
Saitta B et al. (JUL 2014)
Stem cells and development 23 13 1464--1478
Patient-derived skeletal dysplasia induced pluripotent stem cells display abnormal chondrogenic marker expression and regulation by BMP2 and TGFβ1.
Skeletal dysplasias (SDs) are caused by abnormal chondrogenesis during cartilage growth plate differentiation. To study early stages of aberrant cartilage formation in vitro,we generated the first induced pluripotent stem cells (iPSCs) from fibroblasts of an SD patient with a lethal form of metatropic dysplasia,caused by a dominant mutation (I604M) in the calcium channel gene TRPV4. When micromasses were grown in chondrogenic differentiation conditions and compared with control iPSCs,mutant TRPV4-iPSCs showed significantly (Ptextless0.05) decreased expression by quantitative real-time polymerase chain reaction of COL2A1 (IIA and IIB forms),SOX9,Aggrecan,COL10A1,and RUNX2,all of which are cartilage growth plate markers. We found that stimulation with BMP2,but not TGF$\$1,up-regulated COL2A1 (IIA and IIB) and SOX9 gene expression,only in control iPSCs. COL2A1 (Collagen II) expression data were confirmed at the protein level by western blot and immunofluorescence microscopy. TRPV4-iPSCs showed only focal areas of Alcian blue stain for proteoglycans,while in control iPSCs the stain was seen throughout the micromass sample. Similar staining patterns were found in neonatal cartilage from control and patient samples. We also found that COL1A1 (Collagen I),a marker of osteogenic differentiation,was significantly (Ptextless0.05) up-regulated at the mRNA level in TRPV4-iPSCs when compared with the control,and confirmed at the protein level. Collagen I expression in the TRPV4 model also may correlate with abnormal staining patterns seen in patient tissues. This study demonstrates that an iPSC model can recapitulate normal chondrogenesis and that mutant TRPV4-iPSCs reflect molecular evidence of aberrant chondrogenic developmental processes,which could be used to design therapeutic approaches for disorders of cartilage.
View Publication
Chestkov IV et al. (JAN 2014)
Acta Naturae 6 1 54--60
The genetic reprogramming technology allows one to generate pluripotent stem cells for individual patients. These cells,called induced pluripotent stem cells (iPSCs),can be an unlimited source of specialized cell types for the body. Thus,autologous somatic cell replacement therapy becomes possible,as well as the generation of in vitro cell models for studying the mechanisms of disease pathogenesis and drug discovery. Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disorder that leads to a loss of upper and lower motor neurons. About 10% of cases are genetically inherited,and the most common familial form of ALS is associated with mutations in the SOD1 gene. We used the reprogramming technology to generate induced pluripotent stem cells with patients with familial ALS. Patient-specific iPS cells were obtained by both integration and transgene-free delivery methods of reprogramming transcription factors. These iPS cells have the properties of pluripotent cells and are capable of direct differentiation into motor neurons.
View Publication
Jeong J et al. (OCT 2014)
Experimental and Molecular Pathology 97 2 253--258
Patient-tailored application for Duchene muscular dystrophy on mdx mice based induced mesenchymal stem cells
Mesenchymal stem cells (MSCs) may be used as powerful tools for the repair and regeneration of damaged tissues. However,isolating tissue specific-derived MSCs may cause pain and increased infection rates in patients,and repetitive isolations may be required. To overcome these difficulties,we have examined alternative methods for MSC production. Here,we show that induced pluripotent stem cells (iPSCs) may be differentiated into mesenchymal stem cells (iMSCs) following exposure to SB431542. Purified iMSCs were administered to mdx mice to study skeletal muscle regeneration in a murine model of muscular dystrophy. Purified iMSCs displayed fibroblast-like morphology,formed three-dimensional spheroid structures,and expressed characteristic mesenchymal stem cell surface markers such as CD29,CD33,CD73,CD90,and CD105. Moreover,iMSCs were capable of differentiating into adipogenic,osteogenic,and chondrogenic lineages. Transplanting iMSC cells to tibialis anterior skeletal muscle tissue in mdx mice lowered oxidative damage as evidenced by a reduction in nitrotyrosine levels,and normal dystrophin expression levels were restored. This study demonstrates the therapeutic potential of purified iMSCs in skeletal muscle regeneration in mdx mice,and suggests that iPSCs are a viable alternate source for deriving MSCs as needed. textcopyright 2014 Elsevier Inc.
View Publication
PDX1 binds and represses hepatic genes to ensure robust pancreatic commitment in differentiating human embryonic stem cells.
Inactivation of the Pancreatic and Duodenal Homeobox 1 (PDX1) gene causes pancreatic agenesis,which places PDX1 high atop the regulatory network controlling development of this indispensable organ. However,little is known about the identity of PDX1 transcriptional targets. We simulated pancreatic development by differentiating human embryonic stem cells (hESCs) into early pancreatic progenitors and subjected this cell population to PDX1 chromatin immunoprecipitation sequencing (ChIP-seq). We identified more than 350 genes bound by PDX1,whose expression was upregulated on day 17 of differentiation. This group included known PDX1 targets and many genes not previously linked to pancreatic development. ChIP-seq also revealed PDX1 occupancy at hepatic genes. We hypothesized that simultaneous PDX1-driven activation of pancreatic and repression of hepatic programs underlie early divergence between pancreas and liver. In HepG2 cells and differentiating hESCs,we found that PDX1 binds and suppresses expression of endogenous liver genes. These findings rebrand PDX1 as a context-dependent transcriptional repressor and activator within the same cell type.
View Publication
Nakagawa N et al. (DEC 2016)
JCI insight 1 20 e87446
Pentraxin-2 suppresses c-Jun/AP-1 signaling to inhibit progressive fibrotic disease.
Pentraxin-2 (PTX-2),also known as serum amyloid P component (SAP/APCS),is a constitutive,antiinflammatory,innate immune plasma protein whose circulating level is decreased in chronic human fibrotic diseases. Here we show that recombinant human PTX-2 (rhPTX-2) retards progression of chronic kidney disease in Col4a3 mutant mice with Alport syndrome,reducing blood markers of kidney failure,enhancing lifespan by 20%,and improving histological signs of disease. Exogenously delivered rhPTX-2 was detected in macrophages but also in tubular epithelial cells,where it counteracted macrophage activation and was cytoprotective for the epithelium. Computational analysis of genes regulated by rhPTX-2 identified the transcriptional regulator c-Jun along with its activator protein-1 (AP-1) binding partners as a central target for the function of rhPTX-2. Accordingly,PTX-2 attenuates c-Jun and AP-1 activity,and reduces expression of AP-1-dependent inflammatory genes in both monocytes and epithelium. Our studies therefore identify rhPTX-2 as a potential therapy for chronic fibrotic disease of the kidney and an important inhibitor of pathological c-Jun signaling in this setting.
View Publication
Zhang X et al. (JAN 2016)
Carbohydrate Polymers 136 1061--1064
Peptide-conjugated hyaluronic acid surface for the culture of human induced pluripotent stem cells under defined conditions
Hyaluronic acid (HA) has been cross-linked to form hydrogel for potential applications in the self-renewal and differentiation of human pluripotent stem cells (hPSCs) for years. However,HA hydrogel with improved residence time and mechanical integrity that allows the survival of hPSCs under defined conditions is still much needed for clinical applications. In this study,HA was modified with methacrylate functional groups (MeHA) and cross-linked by photo-crosslinking method. After subsequent conjugation with adhesive peptide,these MeHA surfaces demonstrated performance in facilitating human induced pluripotent stem cells (hiPSCs) proliferation,and good pluripotency maintenance of hiPSCs under defined conditions. Moreover,MeHA films on glass-slides exhibited long residence time and mechanical stability throughout hiPSC culture. Our photo-crosslinkable MeHA possesses great value in accelerating the application of HA hydrogel in hiPSCs proliferation and differentiation with the conjugation of adhesive peptides.
View Publication