Wang J et al. (NOV 2013)
Biomaterials 34 35 8878--8886
Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias
Human (h) pluripotent stem cells (PSC) such as embryonic stem cells (ESC) can be directed into cardiomyocytes (CMs),representing a potential unlimited cell source for disease modeling,cardiotoxicity screening and myocardial repair. Although the electrophysiology of single hESC-CMs is now better defined,their multi-cellular arrhythmogenicity has not been thoroughly assessed due to the lack of a suitable experimental platform. Indeed,the generation of ventricular (V) fibrillation requires single-cell triggers as well as sustained multi-cellular reentrant events. Although native VCMs are aligned in a highly organized fashion such that electrical conduction is anisotropic for coordinated contractions,hESC-derived CM (hESC-CM) clusters are heterogenous and randomly organized,and therefore not representative of native conditions. Here,we reported that engineered alignment of hESC-VCMs on biomimetic grooves uniquely led to physiologically relevant responses. Aligned but not isotropic control preparations showed distinct longitudinal (L) and transverse (T) conduction velocities (CV),resembling the native human V anisotropic ratio (AR=LCV/TCV=1.8-2.0). Importantly,the total incidence of spontaneous and inducible arrhythmias significantly reduced from 57% in controls to 17-23% of aligned preparations,thereby providing a physiological baseline for assessing arrhythmogenicity. As such,promotion of pro-arrhythmic effect (e.g.,spatial dispersion by ?? adrenergic stimulation) could be better predicted. Mechanistically,such anisotropy-induced electrical stability was not due to maturation of the cellular properties of hESC-VCMs but their physical arrangement. In conclusion,not only do functional anisotropic hESC-VCMs engineered by multi-scale topography represent a more accurate model for efficacious drug discovery and development as well as arrhythmogenicity screening (of pharmacological and genetic factors),but our approach may also lead to future transplantable prototypes with improved efficacy and safety against arrhythmias. ?? 2013.
View Publication
Zhu H et al. (JUN 2012)
Theriogenology 77 9 1939--50
Effect of GSK-3 inhibitor on the proliferation of multipotent male germ line stem cells (mGSCs) derived from goat testis
The glycogen synthase kinase 3 (GSK3) inhibitor,6-bromoindirubin-3'-oxime (BIO),is a key regulator of many signaling pathways to maintain pluripotency of human and mouse embryonic stem cells (ESCs). However,the effect of BIO on derivation of dairy goat male germline stem cells (mGSCs) remains unclear. The objectives of this study were to investigate whether BIO influences derivation of dairy goat mGSCs. Dairy goat mGSCs were cultured in mTeSR containing BIO medium and its effects on the proliferation ability of goat mGSCs (derived from goats ≤2 mo of age) were evaluated by 5-Bromo-2-deoxyuridine (BrdU) incorporation and alkaline phosphatase (AP) staining. Furthermore,its effects on maintenance of the undifferentiated state of mGSCs in late passages of cultures,as well as the capacity of mGSCs to differentiate into embryoid bodies (EBs) were examined. The presence of BIO increased the mitosis index and the number of AP positive colonies,as well as expression of pluripotent markers,Oct4,Nanog,Sox2,C-myc,Klf4,E-cadherin,and the proliferative markers,Pcna and C-myc. In contrast,there was no significant change in expression of apoptosis markers,P53,P21 and cyclin-related genes (Cyclin A,CDK2,Cyclin D1),as determined by RT-PCR analysis. When mGSCs were cultured in mTeSR medium containing BIO,EBs were formed,which were capable of further differentiating into various cell types found in the three embryonic germ layers,as determined by immunofluorescence and/or histologic staining. In conclusion,adding BIO to cultures BIO significantly promoted establishment of goat mGSC colonies and maintained their undifferentiated state.
View Publication
Ye L et al. (JAN 2013)
PLoS ONE 8 1 e53764
Effective Cardiac Myocyte Differentiation of Human Induced Pluripotent Stem Cells Requires VEGF
Perhaps one of the most significant achievements in modern science is the discovery of human induced pluripotent stem cells (hiPSCs),which have paved the way for regeneration therapy using patients' own cells. Cardiomyocytes differentiated from hiPSCs (hiPSC-CMs) could be used for modelling patients with heart failure,for testing new drugs,and for cellular therapy in the future. However,the present cardiomyocyte differentiation protocols exhibit variable differentiation efficiency across different hiPSC lines,which inhibit the application of this technology significantly. Here,we demonstrate a novel myocyte differentiation protocol that can yield a significant,high percentage of cardiac myocyte differentiation (backslashtextgreater85%) in 2 hiPSC lines,which makes the fabrication of a human cardiac muscle patch possible. The established hiPSCs cell lines being examined include the transgene integrated UCBiPS7 derived from cord blood cells and non-integrated PCBC16iPS from skin fibroblasts. The results indicate that hiPSC-CMs derived from established hiPSC lines respond to adrenergic or acetylcholine stimulation and beat regularly for greater than 60 days. This data also demonstrates that this novel differentiation protocol can efficiently generate hiPSC-CMs from iPSC lines that are derived not only from fibroblasts,but also from blood mononuclear cells.
View Publication
Talavera-Adame D et al. (NOV 2016)
Diabetologia 59 11 2378--2386
Effective endothelial cell and human pluripotent stem cell interactions generate functional insulin-producing beta cells.
AIMS/HYPOTHESIS Endothelial cells (ECs) play an essential role in pancreatic organogenesis. We hypothesise that effective in vitro interactions between human microvascular endothelial cells (HMECs) and human pluripotent stem cells (hPSCs) results in the generation of functional pancreatic beta cells. METHODS Embryoid bodies (EBs) derived from hPSCs were cultured alone (controls) or with ECs in collagen gels. Subsequently,cells were analysed for pancreatic beta cell markers,and then isolated and expanded. Insulin secretion in response to glucose was evaluated in vitro by static and dynamic (perifusion) assays,and in vivo by EB transplantation into immunodeficient mice. RESULTS Co-cultured EBs had a higher expression of mature beta cells markers and enhanced insulin secretion in vitro,compared with controls. In mice,transplanted EBs had higher levels of human C-peptide secretion with a significant reduction in hyperglycaemia after the selective destruction of native pancreatic beta cells. In addition,there was significant in vitro upregulation of bone morphogenetic proteins 2 and 4 (BMP-2,4) in co-cultured cells,compared with controls. CONCLUSIONS/INTERPRETATION ECs provide essential signalling in vitro,such as activation of the BMP pathway,for derivation of functional insulin-producing beta cells from hPSCs.
View Publication
Rapti K et al. (FEB 2015)
Molecular Therapy — Methods & Clinical Development 2 May 2014 14067
Effectiveness of gene delivery systems for pluripotent and differentiated cells.
Human embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) assert a great future for the cardiovascular diseases,both to study them and to explore therapies. However,a comprehensive assessment of the viral vectors used to modify these cells is lacking. In this study,we aimed to compare the transduction efficiency of recombinant adeno-associated vectors (AAV),adenoviruses and lentiviral vectors in hESC,hiPSC,and the derived cardiomyocytes. In undifferentiated cells,adenoviral and lentiviral vectors were superior,whereas in differentiated cells AAV surpassed at least lentiviral vectors. We also tested four AAV serotypes,1,2,6,and 9,of which 2 and 6 were superior in their transduction efficiency. Interestingly,we observed that AAVs severely diminished the viability of undifferentiated cells,an effect mediated by induction of cell cycle arrest genes and apoptosis. Furthermore,we show that the transduction efficiency of the different viral vectors correlates with the abundance of their respective receptors. Finally,adenoviral delivery of the calcium-transporting ATPase SERCA2a to hESC and hiPSC-derived cardiomyocytes successfully resulted in faster calcium reuptake. In conclusion,adenoviral vectors prove to be efficient for both differentiated and undifferentiated lines,whereas lentiviral vectors are more applicable to undifferentiated cells and AAVs to differentiated cells.
View Publication
Lee AS et al. (AUG 2009)
Cell Cycle 8 16 2608--2612
Effects of cell number on teratoma formation by human embryonic stem cells
Teratoma formation is a critical obstacle to safe clinical translation of human embryonic stem (ES) cell-based therapies in the future. As current methods of isolation are unable to yield 100% pure population of differentiated cells from a pluripotent donor source,potential development of these tumors is a significant concern. Here we used non-invasive reporter gene imaging to investigate the relationship between human ES cell number and teratoma formation in a xenogenic model of ES cell transplantation. Human ES cells (H9 line) were stably transduced with a double fusion (DF) reporter construct containing firefly luciferase and enhanced green fluorescent protein (Fluc- eGFP) driven by a human ubiquitin promoter. Immunodeficient mice received intramyocardial (n = 35) or skeletal muscle (n = 35) injection of 1 × 102,1 × 103,1 × 104,1 × 105 or 1 × 106 DF positive ES cells suspended in saline for myocardium and Matrigel for skeletal muscle. Cell survival and proliferation were monitored via bioluminescence imaging (BLI) for an 8 week period following transplantation. Mice negative for Fluc signal after 8 weeks were followed out to day 365 to confirm tumor absence. Significantly,in this study,a minimum of 1 × 105 ES cells in the myocardium and 1 × 104 cells in the skeletal muscle was observed to be requisite for teratoma development,suggesting that human ES cell number may be a critical factor in teratoma formation. Engraftment and tumor occurrence were also observed to be highly dependent on ES cell number. We anticipate these results should yield useful insights to the safe and reliable application of human ES cell derivatives in the clinic. Keywords
View Publication
Hu S et al. (JUN 2016)
JCI Insight 1 8 1--12
Effects of cellular origin on differentiation of human induced pluripotent stem cell–derived endothelial cells
Human induced pluripotent stem cells (iPSCs) can be derived from various types of somatic cells by transient overexpression of 4 Yamanaka factors (OCT4,SOX2,C-MYC,and KLF4). Patient-specific iPSC derivatives (e.g.,neuronal,cardiac,hepatic,muscular,and endothelial cells [ECs]) hold great promise in drug discovery and regenerative medicine. In this study,we aimed to evaluate whether the cellular origin can affect the differentiation,in vivo behavior,and single-cell gene expression signatures of human iPSC-derived ECs. We derived human iPSCs from 3 types of somatic cells of the same individuals: fibroblasts (FB-iPSCs),ECs (EC-iPSCs),and cardiac progenitor cells (CPC-iPSCs). We then differentiated them into ECs by sequential administration of Activin,BMP4,bFGF,and VEGF. EC-iPSCs at early passage (10 textless P textless 20) showed higher EC differentiation propensity and gene expression of EC-specific markers (PECAM1 and NOS3) than FB-iPSCs and CPC-iPSCs. In vivo transplanted EC-iPSC-ECs were recovered with a higher percentage of CD31(+) population and expressed higher EC-specific gene expression markers (PECAM1,KDR,and ICAM) as revealed by microfluidic single-cell quantitative PCR (qPCR). In vitro EC-iPSC-ECs maintained a higher CD31(+) population than FB-iPSC-ECs and CPC-iPSC-ECs with long-term culturing and passaging. These results indicate that cellular origin may influence lineage differentiation propensity of human iPSCs; hence,the somatic memory carried by early passage iPSCs should be carefully considered before clinical translation.
View Publication
Larsen ZH et al. (NOV 2016)
Alcoholism,clinical and experimental research 40 11 2339--2350
Effects of Ethanol on Cellular Composition and Network Excitability of Human Pluripotent Stem Cell-Derived Neurons.
BACKGROUND Prenatal alcohol exposure (PAE) in animal models results in excitatory-inhibitory (E/I) imbalance in neocortex due to alterations in the GABAergic interneuron (IN) differentiation and migration. Thus,E/I imbalance is a potential cause for intellectual disability in individuals with fetal alcohol spectrum disorder (FASD),but whether ethanol (EtOH) changes glutamatergic and GABAergic IN specification during human development remains unknown. Here,we created a human cellular model of PAE/FASD and tested the hypothesis that EtOH exposure during differentiation of human pluripotent stem cell-derived neurons (hPSNs) would cause the aberrant production of glutamatergic and GABAergic neurons,resulting in E/I imbalance. METHODS We applied 50 mM EtOH daily to differentiating hPSNs for 50 days to model chronic first-trimester exposure. We used quantitative polymerase chain reaction,immunocytochemical,and electrophysiological analysis to examine the effects of EtOH on hPSN specification and functional E/I balance. RESULTS We found that EtOH did not alter neural induction nor general forebrain patterning and had no effect on the expression of markers of excitatory cortical pyramidal neurons. In contrast,our data revealed highly significant changes to levels of transcripts involved with IN precursor development (e.g.,GSX2,DLX1/2/5/6,NR2F2) as well as mature IN specification (e.g.,SST,NPY). Interestingly,EtOH did not affect the number of GABAergic neurons generated nor the frequency or amplitude of miniature excitatory and inhibitory postsynaptic currents. CONCLUSIONS Similar to in vivo rodent studies,EtOH significantly and specifically altered the expression of genes involved with IN specification from hPSNs,but did not cause imbalances of synaptic excitation-inhibition. Thus,our findings corroborate previous studies pointing to aberrant neuronal differentiation as an underlying mechanism of intellectual disability in FASD. However,in contrast to rodent binge models,our chronic exposure model suggests possible compensatory mechanisms that may cause more subtle defects of network processing rather than gross alterations in total E/I balance.
View Publication
Zhao Z et al. ( 2016)
Frontiers in cellular neuroscience 10 291
Effects of Feeder Cells on Dopaminergic Differentiation of Human Embryonic Stem Cells.
Mouse embryonic fibroblasts (MEFs) and human foreskin fibroblasts (HFFs) are used for the culture of human embryonic stem cells (hESCs). MEFs and HFFs differed in their capacity to support the proliferation and pluripotency of hESCs and could affect cardiac differentiation potential of hESCs. The aim of this study was to evaluate the effect of MEFs and HFFs feeders on dopaminergic differentiation of hESCs lines. To minimize the impact of culture condition variation,two hESCs lines were cultured on mixed feeder cells (MFCs,MEFs: HFFs = 1:1) and HFFs feeder,respectively,and then were differentiated into dopaminergic (DA) neurons under the identical protocol. Dopaminergic differentiation was evaluated by immunocytochemistry,quantitative fluorescent real-time PCR,transmission and scanning electron microscopy,and patch clamp. Our results demonstrated that these hESCs-derived neurons were genuine and functional DA neurons. However,compared to hESCs line on MFCs feeder,hESCs line on HFFs feeder had a higher proportion of tyrosine hydroxylase (TH) positive cells and expressed higher levels of FOXA2,PITX3,NURR1,and TH genes. In addition,the values of threshold intensity and threshold membrane potential of DA neurons from hESCs line on HFFs feeder were lower than those of DA neurons from hESCs line on the MFCs feeder. In conclusion,HFFs feeder not only facilitated the differentiation of hESCs cells into dopaminergic neurons,but also induced hESCs-derived DA neurons to express higher electrophysiological excitability. Therefore,feeder cells could affect not only dopaminergic differentiation potential of different hESCs lines,but also electrophysiological properties of hESCs-derived DA neurons.
View Publication
Lian R-L et al. (FEB 2016)
Molecular and cellular biochemistry 413 1-2 69--85
Effects of induced pluripotent stem cells-derived conditioned medium on the proliferation and anti-apoptosis of human adipose-derived stem cells.
Human adipose-derived stem cells (hASCs) become an appealing source for regenerative medicine. However,with the multi-passage or cryopreservation for large-scale growth procedures in terms of preclinical and clinical purposes,hASCs often reveal defective cell viability,which is a major obstacle for cell therapy. In our study,the effects of induced pluripotent stem cells-derived conditioned medium (iPS-CM) on the proliferation and anti-apoptosis in hASCs were investigated. hASCs at passage 1 were identified by the analysis of typical surface antigens with flow cytometry assay and adipogenic and osteogenic differentiation. The effect of iPS-CM on the proliferation in hASCs was analyzed by cell cycle assay and Ki67/P27 quantitative polymerase chain reaction analysis. The effect of iPS-CM on the anti-apoptosis of hASCs irradiated by 468 J/m(2) of ultraviolet C was investigated by annexin v/propidium iodide analysis,mitochondrial membrane potential assay,intracellular reactive oxygen species assay,Western blotting and caspase activity assays. The effect of iPS-CM on the surface antigen expressions of hASCs was analyzed using flow cytometry assay. The levels of Activin A and bFGF in culture supernatant of hASCs with different treatments were also detected by enzyme-linked immunosorbent assay. iPS-CM promoted proliferation and inhibited apoptosis of hASCs. This discovery demonstrates that iPS-CM might be used as one of the available means to overcome the propagation obstacle for hASCs and make for large-scale growth procedures in terms of preclinical and clinical purposes.
View Publication
Wilson KD et al. (JUL 2010)
Cancer research 70 13 5539--48
Effects of ionizing radiation on self-renewal and pluripotency of human embryonic stem cells
Human embryonic stem cells (hESC) present a novel platform for in vitro investigation of the early embryonic cellular response to ionizing radiation. Thus far,no study has analyzed the genome-wide transcriptional response to ionizing radiation in hESCs,nor has any study assessed their ability to form teratomas,the definitive test of pluripotency. In this study,we use microarrays to analyze the global gene expression changes in hESCs after low-dose (0.4 Gy),medium-dose (2 Gy),and high-dose (4 Gy) irradiation. We identify genes and pathways at each radiation dose that are involved in cell death,p53 signaling,cell cycling,cancer,embryonic and organ development,and others. Using Gene Set Enrichment Analysis,we also show that the expression of a comprehensive set of core embryonic transcription factors is not altered by radiation at any dose. Transplantation of irradiated hESCs to immune-deficient mice results in teratoma formation from hESCs irradiated at all doses,definitive proof of pluripotency. Further,using a bioluminescence imaging technique,we have found that irradiation causes hESCs to initially die after transplantation,but the surviving cells quickly recover by 2 weeks to levels similar to control. To conclude,we show that similar to somatic cells,irradiated hESCs suffer significant death and apoptosis after irradiation. However,they continue to remain pluripotent and are able to form all three embryonic germ layers. Studies such as this will help define the limits for radiation exposure for pregnant women and also radiotracer reporter probes for tracking cellular regenerative therapies.
View Publication
Xie X et al. (JAN 2011)
Stem cells and development 20 1 127--138
Effects of long-term culture on human embryonic stem cell aging.
In recent years,human embryonic stem (hES) cells have become a promising cell source for regenerative medicine. Although hES cells have the ability for unlimited self-renewal,potential adverse effects of long-term cell culture upon hES cells must be investigated before therapeutic applications of hES cells can be realized. Here we investigated changes in molecular profiles associated with young (textless60 passages) and old (textgreater120 passages) cells of the H9 hES cell line as well as young (textless85 passages) and old (textgreater120 passages) cells of the PKU1 hES cell line. Our results show that morphology,stem cell markers,and telomerase activity do not differ significantly between young and old passage cells. Cells from both age groups were also shown to differentiate into derivatives of all 3 germ layers upon spontaneous differentiation in vitro. Interestingly,mitochondrial dysfunction was found to occur with prolonged culture. Old passage cells of both the H9 and PKU1 lines were characterized by higher mitochondrial membrane potential,larger mitochondrial morphology,and higher reactive oxygen species content than their younger counterparts. Teratomas derived from higher passage cells were also found to have an uneven preference for differentiation compared with tumors derived from younger cells. These findings suggest that prolonged culture of hES cells may negatively impact mitochondrial function and possibly affect long-term pluripotency.
View Publication