Dang SM et al. (MAY 2002)
Biotechnology and bioengineering 78 4 442--53
Efficiency of embryoid body formation and hematopoietic development from embryonic stem cells in different culture systems.
Embryonic stem (ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decisions and to develop scalable methods of cell production. We compared four standard ES cell differentiation culture systems by measuring aspects of embryoid body (EB) formation efficiency and cell proliferation,and by tracking development of a specific differentiated tissue type-blood-using functional (colony-forming cell) and phenotypic (Flk-1 and CD34 expression) assays. We report that individual murine ES cells form EBs with an efficiency of 42 +/- 9%,but this value is rarely obtained because of EB aggregation-a process whereby two or more individual ES cells or EBs fuse to form a single,larger cell aggregate. Regardless of whether EBs were generated from a single ES cell in methylcellulose or liquid suspension culture,or aggregates of ES cells in hanging drop culture,they grew to a similar maximum cell number of 28,000 +/- 9,000 cells per EB. Among the three methods for EB generation in suspension culture there were no differences in the kinetics or frequency of hematopoietic development. Thus,initiating EBs with a single ES cell and preventing EB aggregation should allow for maximum yield of differentiated cells in the EB system. EB differentiation cultures were also compared to attached differentiation culture using the same outputs. Attached colonies were not similarly limited in cell number; however,hematopoietic development in attached culture was impaired. The percentage of early Flk-1 and CD34 expressing cells was dramatically lower than in EBs cultured in suspension,whereas hematopoietic colony formation was almost completely inhibited. These results provide a foundation for development of efficient,scalable bioprocesses for ES cell differentiation,and inform novel methods for the production of hematopoietic tissues.
View Publication
Tian L et al. (APR 2016)
Stem Cell Reviews and Reports 12 4 500--508
Efficient and Controlled Generation of 2D and 3D Bile Duct Tissue from Human Pluripotent Stem Cell-Derived Spheroids
While in vitro liver tissue engineering has been increasingly studied during the last several years,presently engineered liver tissues lack the bile duct system. The lack of bile drainage not only hinders essential digestive functions of the liver,but also leads to accumulation of bile that is toxic to hepatocytes and known to cause liver cirrhosis. Clearly,generation of bile duct tissue is essential for engineering functional and healthy liver. Differentiation of human induced pluripotent stem cells (iPSCs) to bile duct tissue requires long and/or complex culture conditions,and has been inefficient so far. Towards generating a fully functional liver containing biliary system,we have developed defined and controlled conditions for efficient 2D and 3D bile duct epithelial tissue generation. A marker for multipotent liver progenitor in both adult human liver and ductal plate in human fetal liver,EpCAM,is highly expressed in hepatic spheroids generated from human iPSCs. The EpCAM high hepatic spheroids can,not only efficiently generate a monolayer of biliary epithelial cells (cholangiocytes),in a 2D differentiation condition,but also form functional ductal structures in a 3D condition. Importantly,this EpCAM high spheroid based biliary tissue generation is significantly faster than other existing methods and does not require cell sorting. In addition,we show that a knock-in CK7 reporter human iPSC line generated by CRISPR/Cas9 genome editing technology greatly facilitates the analysis of biliary differentiation. This new ductal differentiation method will provide a more efficient method of obtaining bile duct cells and tissues,which may facilitate engineering of complete and functional liver tissue in the future.
View Publication
Badja C et al. (DEC 2014)
Stem cells translational medicine 3 12 1467--72
Efficient and cost-effective generation of mature neurons from human induced pluripotent stem cells.
For years,our ability to study pathological changes in neurological diseases has been hampered by the lack of relevant models until the recent groundbreaking work from Yamanaka's group showing that it is feasible to generate induced pluripotent stem cells (iPSCs) from human somatic cells and to redirect the fate of these iPSCs into differentiated cells. In particular,much interest has focused on the ability to differentiate human iPSCs into neuronal progenitors and functional neurons for relevance to a large number of pathologies including mental retardation and behavioral or degenerative syndromes. Current differentiation protocols are time-consuming and generate limited amounts of cells,hindering use on a large scale. We describe a feeder-free method relying on the use of a chemically defined medium that overcomes the need for embryoid body formation and neuronal rosette isolation for neuronal precursors and terminally differentiated neuron production. Four days after induction,expression of markers of the neurectoderm lineage is detectable. Between 4 and 7 days,neuronal precursors can be expanded,frozen,and thawed without loss of proliferation and differentiation capacities or further differentiated. Terminal differentiation into the different subtypes of mature neurons found in the human brain were observed. At 6-35 days after induction,cells express typical voltage-gated and ionotrophic receptors for GABA,glycine,and acetylcholine. This specific and efficient single-step strategy in a chemically defined medium allows the production of mature neurons in 20-40 days with multiple applications,especially for modeling human pathologies.
View Publication
Lee Y-KK et al. (JAN 2016)
International journal of cardiology 203 964--971
Efficient attenuation of Friedreich's ataxia (FRDA) cardiomyopathy by modulation of iron homeostasis-human induced pluripotent stem cell (hiPSC) as a drug screening platform for FRDA.
BACKGROUND Friedreich's ataxia (FRDA),a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy,is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog,idebenone (IDE) or the iron chelator,deferiprone (DFP),which are both under clinical trial. RESULTS DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 $\$ and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 $\$ With regard to cardiac electrical-contraction (EC) coupling function,decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein,succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition,iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events,cardiac electrical-coupling during contraction.
View Publication
Schinzel RT et al. (JAN 2011)
PloS one 6 12 e27495
Efficient culturing and genetic manipulation of human pluripotent stem cells.
Human pluripotent stem cells (hPSC) hold great promise as models for understanding disease and as a source of cells for transplantation therapies. However,the lack of simple,robust and efficient culture methods remains a significant obstacle for realizing the utility of hPSCs. Here we describe a platform for the culture of hPSCs that 1) allows for dissociation and replating of single cells,2) significantly increases viability and replating efficiency,3) improves freeze/thaw viability 4) improves cloning efficiency and 5) colony size variation. When combined with standard methodologies for genetic manipulation,we found that the enhanced culture platform allowed for lentiviral transduction rates of up to 95% and electroporation efficiencies of up to 25%,with a significant increase in the total number of antibiotic-selected colonies for screening for homologous recombination. We further demonstrated the utility of the enhanced culture platform by successfully targeting the ISL1 locus. We conclude that many of the difficulties associated with culturing and genetic manipulation of hPSCs can be addressed with optimized culture conditions,and we suggest that the use of the enhanced culture platform could greatly improve the ease of handling and general utility of hPSCs.
View Publication
Hansson ML et al. (FEB 2015)
Journal of Biological Chemistry 290 9 5661--5672
Efficient delivery and functional expression of transfected modified mRNA in human embryonic stem cell-derived retinal pigmented epithelial cells
Gene- and cell-based therapies are promising strategies for the treatment of degenerative retinal diseases such as age-related macular degeneration,Stargardt disease,and retinitis pigmentosa. Cellular engineering before transplantation may allow the delivery of cellular factors that can promote functional improvements,such as increased engraftment or survival of transplanted cells. A current challenge in traditional DNA-based vector transfection is to find a delivery system that is both safe and efficient,but using mRNA as an alternative to DNA can circumvent these major roadblocks. In this study,we show that both unmodified and modified mRNA can be delivered to retinal pigmented epithelial (RPE) cells with a high efficiency compared with conventional plasmid delivery systems. On the other hand,administration of unmodified mRNA induced a strong innate immune response that was almost absent when using modified mRNA. Importantly,transfection of mRNA encoding a key regulator of RPE gene expression,microphthalmia-associated transcription factor (MITF),confirmed the functionality of the delivered mRNA. Immunostaining showed that transfection with either type of mRNA led to the expression of roughly equal levels of MITF,primarily localized in the nucleus. Despite these findings,quantitative RT-PCR analyses showed that the activation of the expression of MITF target genes was higher following transfection with modified mRNA compared with unmodified mRNA. Our findings,therefore,show that modified mRNA transfection can be applied to human embryonic stem cell-derived RPE cells and that the method is safe,efficient,and functional.
View Publication
Liu J et al. (NOV 2015)
Nature Protocols 10 11 1842--59
Efficient delivery of nuclease proteins for genome editing in human stem cells and primary cells.
Targeted nucleases,including zinc-finger nucleases (ZFNs),transcription activator-like (TAL) effector nucleases (TALENs) and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9),have provided researchers with the ability to manipulate nearly any genomic sequence in human cells and model organisms. However,realizing the full potential of these genome-modifying technologies requires their safe and efficient delivery into relevant cell types. Unlike methods that rely on expression from nucleic acids,the direct delivery of nuclease proteins to cells provides rapid action and fast turnover,leading to fewer off-target effects while maintaining high rates of targeted modification. These features make nuclease protein delivery particularly well suited for precision genome engineering. Here we describe procedures for implementing protein-based genome editing in human embryonic stem cells and primary cells. Protocols for the expression,purification and delivery of ZFN proteins,which are intrinsically cell-permeable; TALEN proteins,which can be internalized via conjugation with cell-penetrating peptide moieties; and Cas9 ribonucleoprotein,whose nucleofection into cells facilitates rapid induction of multiplexed modifications,are described,along with procedures for evaluating nuclease protein activity. Once they are constructed,nuclease proteins can be expressed and purified within 6 d,and they can be used to induce genomic modifications in human cells within 2 d.
View Publication
Vazin T et al. (FEB 2014)
Neurobiology of Disease 62 62--72
Efficient derivation of cortical glutamatergic neurons from human pluripotent stem cells: a model system to study neurotoxicity in Alzheimer's disease.
Alzheimer's disease (AD) is among the most prevalent forms of dementia affecting the aging population,and pharmacological therapies to date have not been successful in preventing disease progression. Future therapeutic efforts may benefit from the development of models that enable basic investigation of early disease pathology. In particular,disease-relevant models based on human pluripotent stem cells (hPSCs) may be promising approaches to assess the impact of neurotoxic agents in AD on specific neuronal populations and thereby facilitate the development of novel interventions to avert early disease mechanisms. We implemented an efficient paradigm to convert hPSCs into enriched populations of cortical glutamatergic neurons emerging from dorsal forebrain neural progenitors,aided by modulating Sonic hedgehog (Shh) signaling. Since AD is generally known to be toxic to glutamatergic circuits,we exposed glutamatergic neurons derived from hESCs to an oligomeric pre-fibrillar forms of Aβ known as globulomers"�
View Publication
Tan JY et al. (JUL 2013)
Stem cells and development 22 13 1893--1906
Efficient derivation of lateral plate and paraxial mesoderm subtypes from human embryonic stem cells through GSKi-mediated differentiation.
The vertebrae mesoderm is a source of cells that forms a variety of tissues,including the heart,vasculature,and blood. Consequently,the derivation of various mesoderm-specific cell types from human embryonic stem cells (hESCs) has attracted the interest of many investigators owing to their therapeutic potential in clinical applications. However,the need for efficient and reliable methods of differentiation into mesoderm lineage cell types remains a significant challenge. Here,we demonstrated that inhibition of glycogen synthase kinase-3 (GSK-3) is an essential first step toward efficient generation of the mesoderm. Under chemically defined conditions without additional growth factors/cytokines,short-term GSK inhibitor (GSKi) treatment effectively drives differentiation of hESCs into the primitive streak (PS),which can potentially commit toward the mesoderm when further supplemented with bone morphogenetic protein 4. Further analysis confirmed that the PS-like cells derived from GSKi treatment are bipotential,being able to specify toward the endoderm as well. Our findings suggest that the bipotential,PS/mesendoderm-like cell population exists only at the initial stages of GSK-3 inhibition,whereas long-term inhibition results in an endodermal fate. Lastly,we demonstrated that our differentiation approach could efficiently generate lateral plate (CD34(+)KDR(+)) and paraxial (CD34(-)PDGFRα(+)) mesoderm subsets that can be further differentiated along the endothelial and smooth muscle lineages,respectively. In conclusion,our study presents a unique approach for generating early mesoderm progenitors in a chemically directed fashion through the use of small-molecule GSK-3 inhibitor,which may be useful for future applications in regenerative medicine.
View Publication
Emdad L et al. (FEB 2012)
Stem cells and development 21 3 404--10
Efficient Differentiation of Human Embryonic and Induced Pluripotent Stem Cells into Functional Astrocytes
Human high-grade gliomas (hHGG) remain a therapeutic challenge in neuro-oncology despite current multimodality treatments. We recently demonstrated that murine embryonic stem cell (mESC)-derived astrocytes conditionally expressing proapoptotic genes can successfully be used to induce apoptosis and tumor shrinkage of hHGG tumor in vitro and in an in vivo mouse model. The first step in the translation of these results to the clinical settings,however,requires availability of human embryonic stem cells (hESC)- and/or induced pluripotent cell (hiPSC)-derived astrocytes engineered to express proapoptotic genes. The potential for directed differentiation of hESCs and hiPSCs to functional postmitotic astrocytes is not fully characterized. In this study,we show that once specified to neuro-epithelial lineage,hiPSC could be differentiated to astrocytes with a similar efficiency as hESC. However,our analyses of 2 hESC and 2 hiPSC cell lines showed some variability in differentiation potential into astrocytic lineages. Both the hESC- and hiPSC-derived astrocytes appeared to follow the functional properties of mESC-derived astrocytes,namely,migration and tropism for hHGG. This work provides evidence that hESC- and hiPSC-derived cells are able to generate functionally active astrocytes. These results demonstrate the feasibility of using iPSC-derived astrocytes,a new potential source for therapeutic use for brain tumors and other neurological diseases.
View Publication
Sriram G et al. (DEC 2015)
Stem cell research & therapy 6 1 261
Efficient differentiation of human embryonic stem cells to arterial and venous endothelial cells under feeder- and serum-free conditions.
BACKGROUND Heterogeneity of endothelial cells (ECs) is a hallmark of the vascular system which may impact the development and management of vascular disorders. Despite the tremendous progress in differentiation of human embryonic stem cells (hESCs) towards endothelial lineage,differentiation into arterial and venous endothelial phenotypes remains elusive. Additionally,current differentiation strategies are hampered by inefficiency,lack of reproducibility,and use of animal-derived products. METHODS To direct the differentiation of hESCs to endothelial subtypes,H1- and H9-hESCs were seeded on human plasma fibronectin and differentiated under chemically defined conditions by sequential modulation of glycogen synthase kinase-3 (GSK-3),basic fibroblast growth factor (bFGF),bone morphogenetic protein 4 (BMP4) and vascular endothelial growth factor (VEGF) signaling pathways for 5 days. Following the initial differentiation,the endothelial progenitor cells (CD34(+)CD31(+) cells) were sorted and terminally differentiated under serum-free conditions to arterial and venous ECs. The transcriptome and secretome profiles of the two distinct populations of hESC-derived arterial and venous ECs were characterized. Furthermore,the safety and functionality of these cells upon in vivo transplantation were characterized. RESULTS Sequential modulation of hESCs with GSK-3 inhibitor,bFGF,BMP4 and VEGF resulted in stages reminiscent of primitive streak,early mesoderm/lateral plate mesoderm,and endothelial progenitors under feeder- and serum-free conditions. Furthermore,these endothelial progenitors demonstrated differentiation potential to almost pure populations of arterial and venous endothelial phenotypes under serum-free conditions. Specifically,the endothelial progenitors differentiated to venous ECs in the absence of VEGF,and to arterial phenotype under low concentrations of VEGF. Additionally,these hESC-derived arterial and venous ECs showed distinct molecular and functional profiles in vitro. Furthermore,these hESC-derived arterial and venous ECs were nontumorigenic and were functional in terms of forming perfused microvascular channels upon subcutaneous implantation in the mouse. CONCLUSIONS We report a simple,rapid,and efficient protocol for directed differentiation of hESCs into endothelial progenitor cells capable of differentiation to arterial and venous ECs under feeder-free and serum-free conditions. This could offer a human platform to study arterial-venous specification for various applications related to drug discovery,disease modeling and regenerative medicine in the future.
View Publication
Carpenter L et al. (APR 2012)
Stem cells and development 21 6 977--86
Efficient differentiation of human induced pluripotent stem cells generates cardiac cells that provide protection following myocardial infarction in the rat.
Induced pluripotent stem (iPS) cells are being used increasingly to complement their embryonic counterparts to understand and develop the therapeutic potential of pluripotent cells. Our objectives were to identify an efficient cardiac differentiation protocol for human iPS cells as monolayers,and demonstrate that the resulting cardiac progenitors could provide a therapeutic benefit in a rodent model of myocardial infarction. Herein,we describe a 14-day protocol for efficient cardiac differentiation of human iPS cells as a monolayer,which routinely yielded a mixed population in which over 50% were cardiomyocytes,endothelium,or smooth muscle cells. When differentiating,cardiac progenitors from day 6 of this protocol were injected into the peri-infarct region of the rat heart; after coronary artery ligation and reperfusion,we were able to show that human iPS cell-derived cardiac progenitor cells engrafted,differentiated into cardiomyocytes and smooth muscle,and persisted for at least 10 weeks postinfarct. Hearts injected with iPS-derived cells showed a nonsignificant trend toward protection from decline in function after myocardial infarction,as assessed by magnetic resonance imaging at 10 weeks,such that the ejection fraction at 10 weeks in iPS treated hearts was 62%±4%,compared to that of control infarcted hearts at 45%±9% (Ptextless0.2). In conclusion,we demonstrated efficient cardiac differentiation of human iPS cells that gave rise to progenitors that were retained within the infarcted rat heart,and reduced remodeling of the heart after ischemic damage.
View Publication