Douvaras P et al. ( 2016)
International Journal of Molecular Sciences 17 4
Epigenetic modulation of human induced pluripotent stem cell differentiation to oligodendrocytes
Pluripotent stem cells provide an invaluable tool for generating human,disease-relevant cells. Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system,characterized by myelin damage. Oligodendrocytes are the myelinating cells of the central nervous system (CNS); they differentiate from progenitor cells,and their membranes ensheath axons,providing trophic support and allowing fast conduction velocity. The current understanding of oligodendrocyte biology was founded by rodent studies,where the establishment of repressive epigenetic marks on histone proteins,followed by activation of myelin genes,leads to lineage progression. To assess whether this epigenetic regulation is conserved across species,we differentiated human embryonic and induced pluripotent stem cells to oligodendrocytes and asked whether similar histone marks and relative enzymatic activities could be detected. The transcriptional levels of enzymes responsible for methylation and acetylation of histone marks were analyzed during oligodendrocyte differentiation,and the post-translational modifications on histones were detected using immunofluorescence. These studies showed that also in human cells,differentiation along the oligodendrocyte lineage is characterized by the acquisition of multiple repressive histone marks,including deacetylation of lysine residues on histone H3 and trimethylation of residues K9 and K27. These data suggest that the epigenetic modulation of oligodendrocyte identity is highly conserved across species.
View Publication
Wang J et al. (JAN 2014)
Journal of Biological Chemistry 289 4 2384--2395
Epigenetic regulation of miR-302 by JMJD1C inhibits neural differentiation of human embryonic stem cells.
It has been recently reported that the regulatory circuitry formed by OCT4,miR-302,and NR2F2 controls both pluripotency and neural differentiation of human embryonic stem cells (hESCs). We show here that JMJD1C,a histone 3 lysine 9 (H3K9) demethylase expressed in hESCs,directly interacts with this circuitry. hESCs with stable knockdown of JMJD1C remain pluripotent while having reduced miR-302 expression,decreased BMP signaling,and enhanced TGF$\$ JMJD1C binds to the miR-302 promoter and reduces H3K9 methylation. Withdrawal of basic fibroblast growth factor (bFGF) from the culture induces neural differentiation of the knockdown,but not the control,cells within 3 days,accompanied by elevated NR2F2 expression. This can be attenuated with miR-302 mimics or an H3K9 methytransferase inhibitor. Together,our findings suggest that JMJD1C represses neural differentiation of hESCs at least partially by epigenetically sustaining miR-302 expression and that JMJD1C knockdown is sufficient to trigger neural differentiation upon withdrawal of exogenous bFGF.
View Publication
Epigenetic rejuvenation of mesenchymal stromal cells derived from induced pluripotent stem cells
Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast,induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs,which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology,immunophenotype,in vitro differentiation potential,and gene expression profiles as primary MSCs. However,iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics,whereas tissue-specific,senescence-associated,and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion,but they remained rejuvenated with regard to age-related DNAm. Overall,iPS-MSCs are similar to MSCs,but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns - particularly of DNAm patterns associated with tissue type and aging.
View Publication
Konki M et al. (FEB 2016)
Scientific reports 6 February 22190
Epigenetic Silencing of the Key Antioxidant Enzyme Catalase in Karyotypically Abnormal Human Pluripotent Stem Cells.
Epigenomic regulation is likely to be important in the maintenance of genomic integrity of human pluripotent stem cells,however,the mechanisms are unknown. We explored the epigenomes and transcriptomes of human pluripotent stem cells before and after spontaneous transformation to abnormal karyotypes and in correlation to cancer cells. Our results reveal epigenetic silencing of Catalase,a key regulator of oxidative stress and DNA damage control in abnormal cells. Our findings provide novel insight into the mechanisms associated with spontaneous transformation of human pluripotent stem cells towards malignant fate. The same mechanisms may control the genomic stability of cells in somatic tissues.
View Publication
Manukyan M and Singh PB (JAN 2014)
Scientific reports 4 4789
Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states.
We measured the dynamics of an essential epigenetic modifier,HP1β,in human cells at different stages of differentiation using Fluorescence Recovery After Photobleaching (FRAP). We found that HP1β mobility is similar in human embryonic stem cells (hES) and iPS cells where it is more mobile compared to fibroblasts; HP1β is less mobile in senescent fibroblasts than in young (dividing) fibroblasts. Introduction of reprogramming factors"�
View Publication
Lufino MMP et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 369--87
Episomal transgene expression in pluripotent stem cells.
Herpes simplex type 1 (HSV-1) amplicon vectors possess a number of features that make them excellent vectors for the delivery of transgenes into stem cells. HSV-1 amplicon vectors are capable of efficiently transducing both dividing and nondividing cells and since the virus is quite large,152 kb,it is of sufficient size to allow for incorporation of entire genomic DNA loci with native promoters. HSV-1 amplicon vectors can also be used to incorporate and deliver to cells a variety of sequences that allow extrachromosomal retention. These elements offer advantages over integrating vectors as they avoid transgene silencing and insertional mutagenesis. The construction of amplicon vectors carrying extrachromosomal retention elements,their packaging into HSV-1 viral particles,and the use of HSV-1 amplicons for stem cell transduction will be described.
View Publication
Liu L et al. (JAN 2012)
Biochemical and biophysical research communications 417 2 738--43
ER stress response during the differentiation of H9 cells induced by retinoic acid.
Endoplasmic reticulum (ER) stress occurs during early embryonic development. The aim of this study is to determine whether ER stress occurs during human embryonic stem cell differentiation induced by retinoic acid (RA). H9 human embryonic stem cells were subjected to RA treatment for up to 29. days to induce differentiation. HEK293 cells were treated with RA as a control. The results demonstrate that several ER stress-responsive genes are differentially regulated in H9 and HEK293 cells in response to 5. days of RA treatment. GRP78/Bip was upregulated in H9 cells but downregulated in HEK293 cells. eIF2?? was downregulated in H9 cells but not in HEK293 cells. Phosphorylation of eIF2?? was downregulated in H9 cells but upregulated in HEK293 cells. XBP-1 was downregulated immediately after RA treatment in H9 cells,but its downregulation was much slower in HEK293 cells. Additionally,two ER-resident E3 ubiquitin ligases,gp78 and Hrd1,were both upregulated in H9 cells following 5. days of exposure to RA. Moreover,the protein Bcl2 was undetectable in H9 cells and H9-derived cells but was expressed in HEK293 cells,and it expression in the two types of cells was unaltered by RA treatment. In H9 cells treated with RA for 29. days,GRP78/Bip,XBP-1 and Bcl2 were all upregulated. These results suggest that ER stress is involved in H9 cell differentiation induced by RA. ?? 2011 Elsevier Inc.
View Publication
Ramachandra CJA et al. (JUN 2016)
Stem Cells
ErbB Receptor Tyrosine Kinase: A Molecular Switch between Cardiac and Neuroectoderm Specification in Human Pluripotent Stem Cells
Mechanisms determining intrinsic differentiation bias inherent to human pluripotent stem cells (hPSCs) toward cardiogenic fate remain elusive. We evaluated the interplay between ErbB4 and EGFR in determining cardiac differentiation in vitro as these receptor tyrosine kinases (RTKs) are key to heart and brain development in vivo. Our results demonstrate that during cardiac differentiation,cell fate biases exist in hPSCs due to cardiac/neuroectoderm divergence post cardiac mesoderm stage. Stage-specific up-regulation of EGFR in concert with persistent Wnt3a signaling post cardiac mesoderm favors commitment towards neural progenitor cells (NPCs). Inhibition of EGFR abrogates these effects with enhanced (textgreater2-fold) cardiac differentiation efficiencies by increasing proliferation of Nkx2-5 expressing cardiac progenitors while reducing proliferation of Sox2 expressing NPCs. Forced overexpression of ErbB4 rescued cardiac commitment by augmenting Wnt11 signaling. Convergence between EGFR/ErbB4 and canonical/non-canonical Wnt signaling determines cardiogenic fate in hPSCs. This article is protected by copyright. All rights reserved.
View Publication
ErbB4 Activated p38$$ MAPK Isoform Mediates Early Cardiogenesis Through NKx2.5 in Human Pluripotent Stem Cells
Activation of ErbB4 receptor signaling is instrumental in heart development,lack of which results in embryonic lethality. However,mechanism governing its intracellular signaling remains elusive. Using human pluripotent stem cells,we show that ErbB4 is critical for cardiogenesis whereby its genetic knockdown results in loss of cardiomyocytes. Phospho-proteome profiling and Western blot studies attribute this loss to inactivation of p38$\$ isoform which physically interacts with NKx2.5 and GATA4 transcription factors. Post-cardiomyocyte formation p38$\$/NKx2.5 downregulation is followed by p38$\$/MEF2c upregulation suggesting stage-specific developmental roles of p38 MAPK isoforms. Knockdown of p38$\$ similarly disrupts cardiomyocyte formation in spite of the presence of NKx2.5. Cell fractionation and NKx2.5 phosphorylation studies suggest inhibition of ErbB4-p38$\$ hinders NKx2.5 nuclear translocation during early cardiogenesis. This study reveals a novel pathway that directly links ErbB4 and p38$\$ the transcriptional machinery of NKx2.5-GATA4 complex which is critical for cardiomyocyte formation during mammalian heart development.
View Publication
Mekhoubad S et al. (MAY 2012)
Cell stem cell 10 5 595--609
Erosion of dosage compensation impacts human iPSC disease modeling.
Although distinct human induced pluripotent stem cell (hiPSC) lines can display considerable epigenetic variation,it has been unclear whether such variability impacts their utility for disease modeling. Here,we show that although low-passage female hiPSCs retain the inactive X chromosome of the somatic cell they are derived from,over time in culture they undergo an erosion" of X chromosome inactivation (XCI). This erosion of XCI is characterized by loss of XIST expression and foci of H3-K27-trimethylation�
View Publication
Bogomazova AN et al. (JUN 2011)
Aging 3 6 584--596
Error-prone nonhomologous end joining repair operates in human pluripotent stem cells during late G2.
Genome stability of human embryonic stem cells (hESC) is an important issue because even minor genetic alterations can negatively impact cell functionality and safety. The incorrect repair of DNA double-stranded breaks (DSBs) is the ultimate cause of the formation of chromosomal aberrations. Using G2 radiosensitivity assay,we analyzed chromosomal aberrations in pluripotent stem cells and somatic cells. The chromatid exchange aberration rates in hESCs increased manifold 2 hours after irradiation as compared with their differentiated derivatives,but the frequency of radiation-induced chromatid breaks was similar. The rate of radiation-induced chromatid exchanges in hESCs and differentiated cells exhibited a quadratic dose response,revealing two-hit mechanism of exchange formation suggesting that a non-homologous end joining (NHEJ) repair may contribute to their formation. Inhibition of DNA-PK,a key NHEJ component,by NU7026 resulted in a significant decrease in radiation-induced chromatid exchanges in hESCs but not in somatic cells. In contrast,NU7026 treatment increased the frequency of radiation-induced breaks to a similar extent in pluripotent and somatic cells. Thus,DNA-PK dependent NHEJ efficiently participates in the elimination of radiation-induced chromatid breaks during the late G2 in both cell types and DNA-PK activity leads to a high level of misrejoining specifically in pluripotent cells.
View Publication
Malik J et al. (NOV 2013)
Haematologica 98 11 1778--1787
Erythropoietin critically regulates the terminal maturation of murine and human primitive erythroblasts
Primitive erythroid cells,the first red blood cells produced in the mammalian embryo,are necessary for embryonic survival. Erythropoietin and its receptor EpoR,are absolutely required for survival of late-stage definitive erythroid progenitors in the fetal liver and adult bone marrow. Epo- and Epor-null mice die at E13.5 with a lack of definitive erythrocytes. However,the persistence of circulating primitive erythroblasts raises questions about the role of erythropoietin/EpoR in primitive erythropoiesis. Using Epor-null mice and a novel primitive erythroid 2-step culture we found that erythropoietin is not necessary for specification of primitive erythroid progenitors. However,Epor-null embryos develop a progressive,profound anemia by E12.5 as primitive erythroblasts mature as a synchronous cohort. This anemia results from reduced primitive erythroblast proliferation associated with increased p27 expression,from advanced cellular maturation,and from markedly elevated rates of apoptosis associated with an imbalance in pro- and anti-apoptotic gene expression. Both mouse and human primitive erythroblasts cultured without erythropoietin also undergo accelerated maturation and apoptosis at later stages of maturation. We conclude that erythropoietin plays an evolutionarily conserved role in promoting the proliferation,survival,and appropriate timing of terminal maturation of primitive erythroid precursors.
View Publication