Diederichs S and Tuan RS (JUL 2014)
Stem cells and development 23 14 1--53
Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor.
Mesenchymal stem cells (MSCs) have a high potential for therapeutic efficacy in treating diverse musculoskeletal injuries and cardiovascular diseases,and for ameliorating the severity of graft-versus-host and autoimmune diseases. While most of these clinical applications require substantial cell quantities,the number of MSCs that can be obtained initially from a single donor is limited. Reports on the derivation of MSC-like cells from pluripotent stem cells (PSCs) are,thus,of interest,as the infinite proliferative capacity of PSCs opens the possibility to generate large amounts of uniform batches of MSCs. However,characterization of such MSC-like cells is currently inadequate,especially with regard to the question of whether these cells are equivalent or identical to MSCs. In this study,we have derived MSC-like cells [induced PSC-derived MSC-like progenitor cells (iMPCs)] using four different methodologies from a newly established induced PSC line reprogrammed from human bone marrow stromal cells (BMSCs),and compared the iMPCs directly with the originating parental BMSCs. The iMPCs exhibited typical MSC/fibroblastic morphology and MSC-typical surface marker profile,and they were capable of differentiation in vitro along the osteogenic,chondrogenic,and adipogenic lineages. However,compared with the parental BMSCs,iMPCs displayed a unique expression pattern of mesenchymal and pluripotency genes and were less responsive to traditional BMSC differentiation protocols. We,therefore,conclude that iMPCs generated from PSCs via spontaneous differentiation represent a distinct population of cells which exhibit MSC-like characteristics.
View Publication
Chen H et al. (DEC 2015)
Biological research 48 1 59
Functional disruption of human leukocyte antigen II in human embryonic stem cell.
BACKGROUND Theoretically human embryonic stem cells (hESCs) have the capacity to self-renew and differentiate into all human cell types. Therefore,the greatest promise of hESCs-based therapy is to replace the damaged tissues of patients suffering from traumatic or degenerative diseases by the exact same type of cells derived from hESCs. Allograft immune rejection is one of the obstacles for hESCs-based clinical applications. Human leukocyte antigen (HLA) II leads to CD4(+) T cells-mediated allograft rejection. Hence,we focus on optimizing hESCs for clinic application through gene modification. RESULTS Transcription activator-like effector nucleases (TALENs) were used to target MHC class II transactivator (CIITA) in hESCs efficiently. CIITA (-/-) hESCs did not show any difference in the differentiation potential and self-renewal capacity. Dendritic cells (DCs) derived from CIITA (-/-) hESCs expressed CD83 and CD86 but without the constitutive HLA II. Fibroblasts derived from CIITA (-/-) hESCs were powerless in IFN-$\$ expression of HLA II. CONCLUSION We generated HLA II defected hESCs via deleting CIITA,a master regulator of constitutive and IFN-$\$ expression of HLA II genes. CIITA (-/-) hESCs can differentiate into tissue cells with non-HLA II expression. It's promising that CIITA (-/-) hESCs-derived cells could be used in cell therapy (e.g.,T cells and DCs) and escape the attack of receptors' CD4(+) T cells,which are the main effector cells of cellular immunity in allograft.
View Publication
Wang Q et al. (OCT 2016)
Biomaterials 105 52--65
Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.
With the advent of induced pluripotent stem cells and directed differentiation techniques,it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further,when patching on the infarct area,these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering,drug screening,and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future.
View Publication
Mandegar MA et al. (AUG 2011)
Human Molecular Genetics 20 15 2905--13
Functional human artificial chromosomes are generated and stably maintained in human embryonic stem cells
We present a novel and efficient non-integrating gene expression system in human embryonic stem cells (hESc) utilizing human artificial chromosomes (HAC),which behave as autonomous endogenous host chromosomes and segregate correctly during cell division. HAC are important vectors for investigating the organization and structure of the kinetochore,and gene complementation. HAC have so far been obtained in immortalized or tumour-derived cell lines,but never in stem cells,thus limiting their potential therapeutic application. In this work,we modified the herpes simplex virus type 1 amplicon system for efficient transfer of HAC DNA into two hESc. The deriving stable clones generated green fluorescent protein gene-expressing HAC at high frequency,which were stably maintained without selection for 3 months. Importantly,no integration of the HAC DNA was observed in the hESc lines,compared with the fibrosarcoma-derived control cells,where the exogenous DNA frequently integrated in the host genome. The hESc retained pluripotency,differentiation and teratoma formation capabilities. This is the first report of successfully generating gene expressing de novo HAC in hESc,and is a significant step towards the genetic manipulation of stem cells and potential therapeutic applications.
View Publication
Gué et al. (JUN 2017)
Diabetes 66 6 1470--1478
Functional Human Beige Adipocytes From Induced Pluripotent Stem Cells.
Activation of thermogenic beige adipocytes has recently emerged as a promising therapeutic target in obesity and diabetes. Relevant human models for beige adipocyte differentiation are essential to implement such therapeutic strategies. We report a straightforward and efficient protocol to generate functional human beige adipocytes from human induced pluripotent stem cells (hiPSCs). Without overexpression of exogenous adipogenic genes,our method recapitulates an adipogenic developmental pathway through successive mesodermal and adipogenic progenitor stages. hiPSC-derived adipocytes are insulin sensitive and display beige-specific markers and functional properties,including upregulation of thermogenic genes,increased mitochondrial content,and increased oxygen consumption upon activation with cAMP analogs. Engraftment of hiPSC-derived adipocytes in mice produces well-organized and vascularized adipose tissue,capable of β-adrenergic-responsive glucose uptake. Our model of human beige adipocyte development provides a new and scalable tool for disease modeling and therapeutic screening.
View Publication
Du C et al. (JUN 2016)
Advanced healthcare materials 5 16 2080--2091
Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However,the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues,decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering,using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly,the present work is focused on generating the functional unit of the kidney,the glomerulus. In the repopulated organ,the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice,glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant,expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
View Publication
Lam RS et al. ( 2017)
PloS one 12 1 e0169506
Functional Maturation of Human Stem Cell-Derived Neurons in Long-Term Cultures.
Differentiated neurons can be rapidly acquired,within days,by inducing stem cells to express neurogenic transcription factors. We developed a protocol to maintain long-term cultures of human neurons,called iNGNs,which are obtained by inducing Neurogenin-1 and Neurogenin-2 expression in induced pluripotent stem cells. We followed the functional development of iNGNs over months and they showed many hallmark properties for neuronal maturation,including robust electrical and synaptic activity. Using iNGNs expressing a variant of channelrhodopsin-2,called CatCh,we could control iNGN activity with blue light stimulation. In combination with optogenetic tools,iNGNs offer opportunities for studies that require precise spatial and temporal resolution. iNGNs developed spontaneous network activity,and these networks had excitatory glutamatergic synapses,which we characterized with single-cell synaptic recordings. AMPA glutamatergic receptor activity was especially dominant in postsynaptic recordings,whereas NMDA glutamatergic receptor activity was absent from postsynaptic recordings but present in extrasynaptic recordings. Our results on long-term cultures of iNGNs could help in future studies elucidating mechanisms of human synaptogenesis and neurotransmission,along with the ability to scale-up the size of the cultures.
View Publication
Laugsch M et al. (APR 2016)
Molecular therapy : the journal of the American Society of Gene Therapy 24 4 812--822
Functional Restoration of gp91phox-Oxidase Activity by BAC Transgenesis and Gene Targeting in X-linked Chronic Granulomatous Disease iPSCs.
Chronic granulomatous disease (CGD) is an inherited immunodeficiency,caused by the inability of neutrophils to produce functional NADPH oxidase required for fighting microbial infections. The X-linked form of CGD (X-CGD),which is due to mutations in the CYBB (gp91phox) gene,a component of NADPH oxidase,accounts for about two-thirds of CGD cases. We derived induced pluripotent stem cells (iPSCs) from X-CGD patient keratinocytes using a Flp recombinase excisable lentiviral reprogramming vector. For restoring gp91phox function,we applied two strategies: transposon-mediated bacterial artificial chromosome (BAC) transgenesis and gene targeting using vectors with a fixed 5' homology arm (HA) of 8 kb and 3'HA varying in size from 30 to 80 kb. High efficiency of homologous recombination (up to 22%) was observed with increased size of the 3'HA. Both,BAC transgenesis and gene targeting resulted in functional restoration of the gp91phox measured by an oxidase activity assay in X-CGD iPSCs differentiated into the myeloid lineage. In conclusion,we delivered an important milestone towards the use of genetically corrected autologous cells for the treatment of X-CGD and monogenic diseases in general.
View Publication
Tasnim F et al. (MAY 2016)
Molecular Pharmaceutics 13 6 1947--1957
Functionally Enhanced Human Stem Cell Derived Hepatocytes in Galactosylated Cellulosic Sponges for Hepatotoxicity Testing.
Pluripotent stem cell derived hepatocyte-like cells (hPSC-HLCs) are an attractive alternative to primary human hepatocytes (PHHs) used in applications ranging from therapeutics to drug safety testing studies. It would be critical to improve and maintain mature hepatocyte functions of the hPSC-HLCs,especially for long-term studies. If 3D culture systems were to be used for such purposes,it would be important that the system can support formation and maintenance of optimal-sized spheroids for long periods of time,and can also be directly deployed in liver drug testing assays. We report the use of 3-dimensional (3D) cellulosic scaffold system for the culture of hPSC-HLCs. The scaffold has a macroporous network which helps to control the formation and maintenance of the spheroids for weeks. Our results show that culturing hPSC-HLCs in 3D cellulosic scaffolds increases functionality,as demonstrated by improved urea production and hepatic marker expression. In addition,hPSC-HLCs in the scaffolds exhibit a more mature phenotype,as shown by enhanced cytochrome P450 activity and induction. This enables the system to show a higher sensitivity to hepatotoxicants and a higher degree of similarity to PHHs when compared to conventional 2D systems. These results suggest that 3D cellulosic scaffolds are ideal for the long-term cultures needed to mature hPSC-HLCs. The mature hPSC-HLCs with improved cellular function can be continually maintained in the scaffolds and directly used for hepatotoxicity assays,making this system highly attractive for drug testing applications.
View Publication
Higelin J et al. ( 2016)
Frontiers in cellular neuroscience 10 290
FUS Mislocalization and Vulnerability to DNA Damage in ALS Patients Derived hiPSCs and Aging Motoneurons.
Mutations within the FUS gene (Fused in Sarcoma) are known to cause Amyotrophic Lateral Sclerosis (ALS),a neurodegenerative disease affecting upper and lower motoneurons. The FUS gene codes for a multifunctional RNA/DNA-binding protein that is primarily localized in the nucleus and is involved in cellular processes such as splicing,translation,mRNA transport and DNA damage response. In this study,we analyzed pathophysiological alterations associated with ALS related FUS mutations (mFUS) in human induced pluripotent stem cells (hiPSCs) and hiPSC derived motoneurons. To that end,we compared cells carrying a mild or severe mFUS in physiological- and/or stress conditions as well as after induced DNA damage. Following hyperosmolar stress or irradiation,mFUS hiPS cells recruited significantly more cytoplasmatic FUS into stress granules accompanied by impaired DNA-damage repair. In motoneurons wild-type FUS was localized in the nucleus but also deposited as small punctae within neurites. In motoneurons expressing mFUS the protein was additionally detected in the cytoplasm and a significantly increased number of large,densely packed FUS positive stress granules were seen along neurites. The amount of FUS mislocalization correlated positively with both the onset of the human disease (the earlier the onset the higher the FUS mislocalization) and the maturation status of the motoneurons. Moreover,even in non-stressed post-mitotic mFUS motoneurons clear signs of DNA-damage could be detected. In summary,we found that the susceptibility to cell stress was higher in mFUS hiPSCs and hiPSC derived motoneurons than in controls and the degree of FUS mislocalization correlated well with the clinical severity of the underlying ALS related mFUS. The accumulation of DNA damage and the cellular response to DNA damage stressors was more pronounced in post-mitotic mFUS motoneurons than in dividing hiPSCs suggesting that mFUS motoneurons accumulate foci of DNA damage,which in turn might be directly linked to neurodegeneration.
View Publication
Wang R et al. (DEC 2015)
BMC cancer 16 1 56
Fusion with stem cell makes the hepatocellular carcinoma cells similar to liver tumor-initiating cells.
BACKGROUND Cell fusion is a fast and highly efficient technique for cells to acquire new properties. The fusion of somatic cells with stem cells can reprogram somatic cells to a pluripotent state. Our research on the fusion of stem cells and cancer cells demonstrates that the fused cells can exhibit stemness and cancer cell-like characteristics. Thus,tumor-initiating cell-like cells are generated. METHODS We employed laser-induced single-cell fusion technique to fuse the hepatocellular carcinoma cells and human embryonic stem cells (hESC). Real-time RT-PCR,flow cytometry and in vivo tumorigenicity assay were adopted to identify the gene expression difference. RESULTS We successfully produced a fused cell line that coalesces the gene expression information of hepatocellular carcinoma cells and stem cells. Experimental results showed that the fused cells expressed cancer and stemness markers as well as exhibited increased resistance to drug treatment and enhanced tumorigenesis. CONCLUSIONS Fusion with stem cells transforms liver cancer cells into tumor initiating-like cells. Results indicate that fusion between cancer cell and stem cell may generate tumor initiating-like cells.
View Publication
Nguyen HT et al. (FEB 2014)
Molecular Human Reproduction 20 2 168--177
Gain of 20q11.21 in human embryonic stem cells improves cell survival by increased expression of Bcl-xL
Gain of 20q11.21 is a chromosomal abnormality that is recurrently found in human pluripotent stem cells and cancers,strongly suggesting that this mutation confers a proliferative or survival advantage to these cells. In this work we studied three human embryonic stem cell (hESC) lines that acquired a gain of 20q11.21 during in vitro culture. The study of the mRNA gene expression levels of the loci located in the common region of duplication showed that HM13,ID1,BCL2L1,KIF3B and the immature form of the micro-RNA miR-1825 were up-regulated in mutant cells. ID1 and BCL2L1 were further studied as potential drivers of the phenotype of hESC with a 20q11.21 gain. We found no increase in the protein levels of ID1,nor the downstream effects expected from over-expression of this gene. On the other hand,hESC with a gain of 20q11.21 had on average a 3-fold increase of Bcl-xL (the anti-apoptotic isoform of BCL2L1) protein levels. The mutant hESC underwent 2- to 3-fold less apoptosis upon loss of cell-to-cell contact and were ∼2-fold more efficient in forming colonies from a single cell. The key role of BCL2L1 in this mutation was further confirmed by transgenic over-expression of BCL2L1 in the wild-type cells,leading to apoptosis-resistant cells,and BCL2L1-knock-down in the mutant hESC,resulting in a restoration of the wild-type phenotype. This resistance to apoptosis supposes a significant advantage for the mutant cells,explaining the high frequency of gains of 20q11.21 in human pluripotent stem cells.
View Publication