Generation and purification of definitive endoderm cells generated from pluripotent stem cells
Differentiation of pluripotent stem cells into cells of the definitive endoderm requires an in vitro gastrulation event. Differentiated somatic cells derived from this germ layer may then be used for cell replacement therapies of degenerative diseases of the liver,lung,and pancreas. Here we describe an endoderm differentiation protocol,which initiates the differentiation from a defined cell number of dispersed single cells and reliably yields in textgreater70-80 % endoderm-committed cells in a short 5-day treatment regimen.
View Publication
Carlson AL et al. ( 2016)
Nature communications 7 10862
Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds.
Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries,but reprogrammed neurons are dissociated and spatially disorganized during transplantation,rendering poor cell survival,functionality and engraftment in vivo. Here,we present the design of three-dimensional (3D) microtopographic scaffolds,using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming,neural network establishment and support neuronal engraftment into the brain. Scaffold-supported,reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices,showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells,and allowed delivery of multiple neuronal subtypes. Thus,3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance.
View Publication
Hunihan L et al. (APR 2017)
Stem cell research 20 67--69
Generation of a clonal induced pluripotent stem cell (iPSC) line expressing the mutant MECP2 allele from a Rett Syndrome patient fibroblast line.
Human fibroblast cells collected from a 3-year old,female Rett Syndrome patient with a 32bp deletion in the X-linked MECP2 gene were obtained from the Coriell Institute. Fibroblasts were reprogrammed to iPSC cells using a Sendai-virus delivery system expressing human KOSM transcription factors. Cell-line pluripotency was demonstrated by gene expression,immunocytochemistry,in-vitro differentiation trilineage capacity and was of normal karyotype. Interestingly,subsequent clones retained the epigenetic memory of the parent fibroblasts allowing for the segregation of wild-type and mutant expressing clones. This MECP2 mutant expressing clone may serve as a model for investigating MECP2 reactivation in Rett's Syndrome.
View Publication
Shetty R and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 271--273
Generation of a constitutively expressing Tetracycline repressor (TetR) human embryonic stem cell line BJNhem20-TetR
Human embryonic stem cell line BJNhem20-TetR was generated using non-viral method. The construct pCAG-TetRnls was transfected using microporation procedure. BJNhem20-TetR can subsequently be transfected with any vector harbouring a TetO (Tet operator) sequence to generate doxycycline based inducible line. For example,in human embryonic stem cells,the pSuperior based TetO system has been transfected into a TetR containing line to generate OCT4 knockdown cell line (Zafarana et al.,2009). Thus BJNhem20-TetR can be used as a tool to perturb gene expression in human embryonic stem cells.
View Publication
Ruiz S et al. (NOV 2012)
Journal of Biological Chemistry 287 48 40767--40778
Generation of a drug-inducible reporter system to study cell reprogramming in human cells
BACKGROUND Strategies on the basis of doxycycline-inducible lentiviruses in mouse cells allowed the examination of mechanisms governing somatic cell reprogramming. RESULTS Using a doxycycline-inducible human reprogramming system,we identified unreported miRs enhancing reprogramming efficiency. CONCLUSION We generated a drug-inducible human reprogramming reporter system as an invaluable tool for genetic or chemical screenings. SIGNIFICANCE These cellular systems provide a tool to enable the advancement of reprogramming technologies in human cells. Reprogramming of somatic cells into induced pluripotent stem cells is achieved by the expression of defined transcription factors. In the last few years,reprogramming strategies on the basis of doxycycline-inducible lentiviruses in mouse cells became highly powerful for screening purposes when the expression of a GFP gene,driven by the reactivation of endogenous stem cell specific promoters,was used as a reprogramming reporter signal. However,similar reporter systems in human cells have not been generated. Here,we describe the derivation of drug-inducible human fibroblast-like cell lines that express different subsets of reprogramming factors containing a GFP gene under the expression of the endogenous OCT4 promoter. These cell lines can be used to screen functional substitutes for reprogramming factors or modifiers of reprogramming efficiency. As a proof of principle of this system,we performed a screening of a library of pluripotent-enriched microRNAs and identified hsa-miR-519a as a novel inducer of reprogramming efficiency.
View Publication
Shetty DK and Inamdar MS (MAR 2016)
Stem Cell Research 16 2 207--209
Generation of a heterozygous knockout human embryonic stem cell line for the OCIAD1 locus using CRISPR/CAS9 mediated targeting: BJNhem20-OCIAD1-CRISPR-20.
Ovarian carcinoma immuno-reactive antigen domain containing 1(OCIAD1) single copy was knocked out generating an OCIAD1 heterozygous knockout human embryonic stem line named BJNhem20-OCIAD1-CRISPR-20. The line was generated using CRISPR-Cas9D10A double nickase knockout strategy (Mali et al.,2013).
View Publication
Ovchinnikov DA et al. (JUL 2012)
World journal of stem cells 4 7 71--9
Generation of a human embryonic stem cell line stably expressing high levels of the fluorescent protein mCherry.
AIM: The generation and characterization of a human embryonic stem cell (hESC) line stably expressing red fluorescent mCherry protein.backslashnbackslashnMETHODS: Lentiviral transduction of a ubiquitously-expressed human EF-1α promoter driven mCherry transgene was performed in MEL2 hESC. Red fluore-scence was assessed by immunofluorescence and flow cytometry. Pluripotency of stably transduced hESC was determined by immunofluorescent pluripotency marker expression,flow cytometry,teratoma assays and embryoid body-based differentiation followed by reverse transcriptase-polymerase chain reaction. Quantification of cell motility and survival was performed with time lapse microscopy.backslashnbackslashnRESULTS: Constitutively fluorescently-labeled hESCs are useful tools for facile in vitro and in vivo tracking of survival,motility and cell spreading on various surfaces before and after differentiation. Here we describe the generation and characterization of a hESC line (MEL2) stably expressing red fluorescent protein,mCherry. This line was generated by random integration of a fluorescent protein-expressing cassette,driven by the ubiquitously-expressed human EF-1α promoter. Stably transfected MEL2-mCherry hESC were shown to express pluripotency markers in the nucleus (POU5F1/OCT4,NANOG and SOX2) and on the cell surface (SSEA4,TRA1-60 and TG30/CD9) and were shown to maintain a normal karyotype in long-term (for at least 35 passages) culture. MEL2-mCherry hESC further readily differentiated into representative cell types of the three germ layers in embryoid body and teratoma based assays and,importantly,maintained robust mCherry expression throughout differentiation. The cell line was next adapted to single-cell passaging,rendering it compatible with numerous bioengineering applications such as measurement of cell motility and cell spreading on various protein modified surfaces,quantification of cell attachment to nanoparticles and rapid estimation of cell survival.backslashnbackslashnCONCLUSION: The MEL2-mCherry hESC line conforms to the criteria of bona fide pluripotent stem cells and maintains red fluorescence throughout differentiation,making it a useful tool for bioengineering and in vivo tracking experiments.
View Publication
Ma D et al. (JAN 2017)
Stem cell research 18 54--56
Generation of a human induced pluripotent stem cell (iPSC) line carrying the Parkinson's disease linked LRRK2 variant S1647T.
Peripheral blood mononuclear cells (PBMCs) were collected from a clinically diagnosed 64-year old male Parkinson's disease (PD) patient with S1647T variant in the LRRK2 gene. The PMBCs were reprogrammed with the human OSKM transcription factors using the Sendai-virus reprogramming system. The transgene-free iPSC showed pluripotency confirmed by immunofluorescent staining for pluripotency markers and differentiated into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This cellular model will be useful for further function studies and therapeutic screening.
View Publication
Zhang S et al. (MAR 2017)
Stem cell research 19 49--51
Generation of a human induced pluripotent stem cell (iPSC) line from a 64year old male patient with multiple schwannoma.
Peripheral blood was collected from a clinically diagnosed 64-year old male multiple schwannoma patient. Peripheral blood mononuclear cells (PBMCs) were reprogrammed with the Yamanaka KMOS reprogramming factors using the Sendai-virus reprogramming system. The transgene-free iPSC line showed pluripotency verified by immunofluorescent staining for pluripotency markers,and the iPSC line was able to differentiate into the 3 germ layers in vivo. The iPSC line also showed normal karyotype. This in vitro cellular model will be useful for further pathological studies of multiple schwannoma.
View Publication
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 673--676
Generation of a human iPSC line from a patient with an optic atrophy ‘plus' phenotype due to a mutation in the OPA1 gene
Human iPSC line Oex2054SV.4 was generated from fibroblasts of a patient with an optic atrophy 'plus' phenotype associated with a heterozygous mutation in the OPA1 gene. Reprogramming factors OCT3/4,SOX2,CMYC and KLF4 were delivered using a non-integrative methodology that involves the use of Sendai virus.
View Publication
Galera-Monge T et al. (MAY 2016)
Stem Cell Research 16 3 766--769
Generation of a human iPSC line from a patient with Leigh syndrome caused by a mutation in the MT-ATP6 gene
Human iPSC line L749.1 was generated from fibroblasts of a patient with Leigh syndrome associated with a heteroplasmic mutation in the MT-ATP6 gene. Reprogramming factors OCT4,SOX2,CMYC and KLF4 were delivered using retroviruses.
View Publication
Lukovic D et al. (MAY 2017)
Stem cell research 21 23--25
Generation of a human iPSC line from a patient with retinitis pigmentosa caused by mutation in PRPF8 gene.
The human iPSC cell line,RP2-FiPS4F1 (RCPFi001-A),derived from dermal fibroblasts from the patient with retinitis pigmentosa caused by the mutation of the gene PRPF8,was generated by non-integrative reprogramming technology using OCT3/4,SOX2,CMYC and KLF4 reprogramming factors.
View Publication