K. B. Langer et al. (APR 2018)
Stem cell reports 10 4 1282--1293
Retinal Ganglion Cell Diversity and Subtype Specification from Human Pluripotent Stem Cells.
Retinal ganglion cells (RGCs) are the projection neurons of the retina and transmit visual information to postsynaptic targets in the brain. While this function is shared among nearly all RGCs,this class of cell is remarkably diverse,comprised of multiple subtypes. Previous efforts have identified numerous RGC subtypes in animal models,but less attention has been paid to human RGCs. Thus,efforts of this study examined the diversity of RGCs differentiated from human pluripotent stem cells (hPSCs) and characterized defined subtypes through the expression of subtype-specific markers. Further investigation of these subtypes was achieved using single-cell transcriptomics,confirming the combinatorial expression of molecular markers associated with these subtypes,and also provided insight into more subtype-specific markers. Thus,the results of this study describe the derivation of RGC subtypes from hPSCs and will support the future exploration of phenotypic and functional diversity within human RGCs.
View Publication
Retinoblastoma-binding proteins 4 and 9 are important for human pluripotent stem cell maintenance.
OBJECTIVE: The molecular mechanisms that maintain human pluripotent stem (PS) cells are not completely understood. Here we sought to identify new candidate PS cell regulators to facilitate future improvements in their generation,expansion,and differentiation. MATERIALS AND METHODS: We used bioinformatic analyses of multiple serial-analysis-of-gene-expression libraries (generated from human PS cells and their differentiated derivatives),together with small interfering RNA (siRNA) screening to identify candidate pluripotency regulators. Validation of candidate regulators involved promoter analyses,Affymetrix profiling,real-time PCR,and immunoprecipitation. RESULTS: Promoter analysis of genes differentially expressed across multiple serial-analysis-of-gene-expression libraries identified E2F motifs in the promoters of many PS cell-specific genes (e.g.,POU5F1,NANOG,SOX2,FOXD3). siRNA analyses identified two retinoblastoma binding proteins (RBBP4,RBBP9) as required for maintenance of multiple human PS cell types. Both RBBPs were bound to RB in human PS cells,and E2F motifs were present in the promoters of genes whose expression was altered by decreasing RBBP4 and RBBP9 expression. Affymetrix and real-time PCR studies of siRNA-treated human PS cells showed that reduced RBBP4 or RBBP9 expression concomitantly decreased expression of POU5F1,NANOG,SOX2,and/or FOXD3 plus certain cell cycle genes (e.g.,CCNA2,CCNB1),while increasing expression of genes involved in organogenesis (particularly neurogenesis). CONCLUSIONS: These results reveal new candidate positive regulators of human PS cells,providing evidence of their ability to regulate expression of pluripotency,cell cycle,and differentiation genes in human PS cells. These data provide valuable new leads for further elucidating mechanisms of human pluripotency.
View Publication
Wobus AM et al. (JUN 1997)
Journal of molecular and cellular cardiology 29 6 1525--39
Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes.
Pluripotent embryonic stem (ES) cells spontaneously differentiate via embryo-like aggregates into cardiomyocytes of pacemaker-,atrium- and ventricle-like type,which can be distinguished by their specific patterns of action potentials. It has been shown that retinoic acid (RA) treatment during ES cell differentiation increases the number of cardiomyocytes in a time- and concentration-dependent manner. In order to test the effect of RA on cardiomyocyte differentiation and specialization into ventricle-like cardiomyocytes,we studied gene expression of beta-galactosidase driven by the ventricular myosin light chain-2 (MLC-2v) promoter as an indicator for ventricular differentiation. Clones containing the stably integrated expression vector pGNA/MLC-2.1 were selected,which revealed an increase of beta-galactosidase activity in cardiomyocytes of embryoid bodies at day 7 + 16. RA,both,in the all-trans and in the 9-cis configuration resulted in a significant acceleration of cardiomyocyte differentiation and a transient increase of beta-galactosidase activity. To test whether this acceleration of cardiac differentiation and RA-induced increase of the MLC-2v promotor/beta-galactosidase activity reflects an increase of cardiac- and ventricle-specific gene expression,a semi-quantitative RT-PCR analysis was performed for alpha-cardiac myosin heavy chain (alpha-MHC) and MLC-2v genes. It was shown that both 10(-8) M and 10(-9) M RA resulted in an increased level of alpha-cardiac MHC and MLC-2v mRNA in embryoid bodies in early,but not in terminal developmental stages. This led us to the conclusion that the RA-induced accelerated expression of cardiac-specific genes results in an enhanced development of ventricular cardiomyocytes. An increased number of ventricle-like cells after RA treatment was also found by patch-clamp analysis. The number of cardiomyocytes with Purkinje- and ventricle-like properties was shown to be increased by RA,whereas the number of pacemaker- and atrium-like cells was reduced and early pacemaker cells were not quantitatively affected.
View Publication
Yu C et al. (DEC 2010)
Blood 116 23 4786--94
Retinoic acid enhances the generation of hematopoietic progenitors from human embryonic stem cell-derived hemato-vascular precursors.
Current induction schemes directing hematopoietic differentiation of human embryonic stem cells (hESCs) are not well defined to mimic the sequential stages of hematopoietic development in vivo. Here,we report a 3-stage method to direct differentiation of hESCs toward hematopoietic progenitors in chemically defined mediums. In the first 2 stages,we efficiently generated T-positive primitive streak/mesendoderm cells and kinase domain receptor-positive (KDR(+)) platelet-derived growth factor receptor α-negative (PDGFRα(-)) hemato-vascular precursors sequentially. In the third stage,we found that cells in a spontaneous differentiation condition mainly formed erythroid colonies. Addition of all-trans retinoic acid (RA) greatly enhanced generation of hematopoietic progenitors in this stage while suppressing erythroid development. The RA-treated cells highly expressed definitive hematopoietic genes,formed large numbers of multilineage and myeloid colonies,and gave rise to greater than 45% CD45(+) hematopoietic cells. When hematopoietic progenitors were selected with CD34 and C-Kit,greater than 95% CD45(+) hematopoietic cells could be generated. In addition,we found that endogenous RA signaling at the second stage was required for vascular endothelial growth factor/basic fibroblast growth factor-induced hemato-vascular specification,whereas exogenously applied RA efficiently induced KDR(-)PDGFRα(+) paraxial mesoderm cells. Our study suggests that RA signaling plays diverse roles in human mesoderm and hematopoietic development.
View Publication
Muñ et al. (JAN 2014)
Investigative Ophthalmology and Visual Science 55 1 198--209
Retinoid uptake, processing, and secretion in human iPSRPE support the visual cycle
PURPOSE: Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason,it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE.$$n$$nMETHODS: iPS-RPE was derived from human iPS cells. Immunocytochemistry,RT-PCR,and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT),RPE65,cellular retinaldehyde-binding protein (CRALBP),and pigment epithelium-derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids.$$n$$nRESULTS: Cultured iPS-RPE expresses visual cycle genes LRAT,CRALBP,and RPE65. After incubation with all-trans retinol,iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly,after incubation with all-trans retinol,iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media.$$n$$nCONCLUSIONS: iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally,the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE.
View Publication
Xu X et al. (MAR 2017)
Stem Cell Reports 8 3 619--633
Reversal of Phenotypic Abnormalities by CRISPR/Cas9-Mediated Gene Correction in Huntington Disease Patient-Derived Induced Pluripotent Stem Cells
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable,synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells,including impaired neural rosette formation,increased susceptibility to growth factor withdrawal,and deficits in mitochondrial respiration,are rescued in isogenic controls. Importantly,using genome-wide expression analysis,we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines,suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities,and the importance of isogenic controls for disease modeling using hiPSCs.
View Publication
Mitra I et al. (JAN 2017)
PLoS genetics 13 1 e1006516
Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders.
Although gene-gene interaction,or epistasis,plays a large role in complex traits in model organisms,genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans,a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies),we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10-16),with a number of pairwise interactions meeting genome-wide criteria for significance. Finally,we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches,and we showed dysregulation of a gene in this region,GPR141,in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs,confirm a role for the Ras/MAPK pathway in idiopathic ASDs,and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway.
View Publication
Lee J-HJBJH et al. (APR 2015)
Stem Cells 33 4 1142--1152
Reversible lineage-specific priming of human embryonic stem cells can be exploited to optimize the yield of differentiated cells.
The clinical use of human embryonic stem cells (hESCs) requires efficient cellular expansion that must be paired with an ability to generate specialized progeny through differentiation. Self-renewal and differentiation are deemed inherent hallmarks of hESCs and a growing body of evidence suggests that initial culture conditions dictate these two aspects of hESC behavior. Here,we reveal that defined culture conditions using commercial mTeSR1 media augment the expansion of hESCs and enhance their capacity for neural differentiation at the expense of hematopoietic lineage competency without affecting pluripotency. This culture-induced modification was shown to be reversible,as culture in mouse embryonic fibroblast-conditioned media (MEF-CM) in subsequent passages allowed mTeSR1-expanded hESCs to re-establish hematopoietic differentiation potential. Optimal yield of hematopoietic cells can be achieved by expansion in mTeSR1 followed by a recovery period in MEF-CM. Furthermore,the lineage propensity to hematopoietic and neural cell types could be predicted via analysis of surrogate markers expressed by hESCs cultured in mTeSR1 versus MEF-CM,thereby circumventing laborious in vitro differentiation assays. Our study reveals that hESCs exist in a range of functional states and balance expansion with differentiation potential,which can be modulated by culture conditions in a predictive and quantitative manner. Stem Cells 2015;33:1142-1152.
View Publication
Compagnucci C et al. (APR 2015)
Biochemical and Biophysical Research Communications 459 2 179--183
Rho-kinase signaling controls nucleocytoplasmic shuttling of class IIa Histone Deacetylase (HDAC7) and transcriptional activation of orphan nuclear receptor NR4A1
Rho-kinase (ROCK) has been well documented to play a key role in RhoA-induced actin remodeling. ROCK activation results in myosin light chain (MLC) phosphorylation either by direct action on MLC kinase (MLCK) or by inhibition of MLC phosphatase (MLCP),modulating actin-myosin contraction. We found that inhibition of the ROCK pathway in induced pluripotent stem cells,leads to nuclear export of HDAC7 and transcriptional activation of the orphan nuclear receptor NR4A1 while in cells with constitutive ROCK hyperactivity due to loss of function of the RhoGTPase activating protein Oligophrenin-1 (OPHN1),the orphan nuclear receptor NR4A1 is downregulated. Our study identify a new target of ROCK signaling via myosin phosphatase subunit (MYPT1) and Histone Deacetylase (HDAC7) at the nuclear level and provide new insights in the cellular functions of ROCK.
View Publication
Alla RK and Cairns BR (JAN 2014)
PloS one 9 1 e85648
RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors
Recent genomic approaches have revealed that the repertoire of RNA Pol III-transcribed genes varies in different human cell types,and that this variation is likely determined by a combination of the chromatin landscape,cell-specific DNA-binding transcription factors,and collaboration with RNA Pol II. Although much is known about this regulation in differentiated human cells,there is presently little understanding of this aspect of the Pol III system in human ES cells. Here,we determine the occupancy profiles of Pol III components in human H1 ES cells,and also induced pluripotent cells,and compare to known profiles of chromatin,transcription factors,and RNA expression. We find a relatively large fraction of the Pol III repertoire occupied in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). In ES cells we find clear correlations between Pol III occupancy and active chromatin. Interestingly,we find a highly significant fraction of Pol III-occupied genes with adjacent binding events by pluripotency factors in ES cells,especially NANOG. Notably,in human ES cells we find H3K27me3 adjacent to but not overlapping many active Pol III loci. We observe in all such cases,a peak of H3K4me3 and/or RNA Pol II,between the H3K27me3 and Pol III binding peaks,suggesting that H3K4me3 and Pol II activity may “insulate�? Pol III from neighboring repressive H3K27me3. Further,we find iPSCs have a larger Pol III repertoire than their precursors. Finally,the active Pol III genome in iPSCs is not completely reprogrammed to a hESC like state and partially retains the transcriptional repertoire of the precursor. Together,our correlative results are consistent with Pol III binding and activity in human ES cells being enabled by active/permissive chromatin that is shaped in part by the pluripotency network of transcription factors and RNA Pol II activity.
View Publication
Nä et al. (MAR 2012)
Stem Cells 30 3 452--60
RNA-binding protein L1TD1 interacts with LIN28 via RNA and is required for human embryonic stem cell self-renewal and cancer cell proliferation.
Human embryonic stem cells (hESC) have a unique capacity to self-renew and differentiate into all the cell types found in human body. Although the transcriptional regulators of pluripotency are well studied,the role of cytoplasmic regulators is still poorly characterized. Here,we report a new stem cell-specific RNA-binding protein L1TD1 (ECAT11,FLJ10884) required for hESC self-renewal and cancer cell proliferation. Depletion of L1TD1 results in immediate downregulation of OCT4 and NANOG. Furthermore,we demonstrate that OCT4,SOX2,and NANOG all bind to the promoter of L1TD1. Moreover,L1TD1 is highly expressed in seminomas,and depletion of L1TD1 in these cancer cells influences self-renewal and proliferation. We show that L1TD1 colocalizes and interacts with LIN28 via RNA and directly with RNA helicase A (RHA). LIN28 has been reported to regulate translation of OCT4 in complex with RHA. Thus,we hypothesize that L1TD1 is part of the L1TD1-RHA-LIN28 complex that could influence levels of OCT4. Our results strongly suggest that L1TD1 has an important role in the regulation of stemness.
View Publication
Brohawn DG et al. (AUG 2016)
PloS one 11 8 e0160520
RNAseq Analyses Identify Tumor Necrosis Factor-Mediated Inflammation as a Major Abnormality in ALS Spinal Cord.
ALS is a rapidly progressive,devastating neurodegenerative illness of adults that produces disabling weakness and spasticity arising from death of lower and upper motor neurons. No meaningful therapies exist to slow ALS progression,and molecular insights into pathogenesis and progression are sorely needed. In that context,we used high-depth,next generation RNA sequencing (RNAseq,Illumina) to define gene network abnormalities in RNA samples depleted of rRNA and isolated from cervical spinal cord sections of 7 ALS and 8 CTL samples. We aligned textgreater50 million 2X150 bp paired-end sequences/sample to the hg19 human genome and applied three different algorithms (Cuffdiff2,DEseq2,EdgeR) for identification of differentially expressed genes (DEG's). Ingenuity Pathways Analysis (IPA) and Weighted Gene Co-expression Network Analysis (WGCNA) identified inflammatory processes as significantly elevated in our ALS samples,with tumor necrosis factor (TNF) found to be a major pathway regulator (IPA) and TNF$$-induced protein 2 (TNFAIP2) as a major network hub" gene (WGCNA). Using the oPOSSUM algorithm�
View Publication