Cao N et al. (SEP 2013)
Cell Research 23 9 1119--1132
Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions
Cardiovascular progenitor cells (CVPCs) derived from human pluripotent stem cells (hPSCs),including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs),hold great promise for the study of cardiovascular development and cell-based therapy of heart diseases,but their applications are challenged by the difficulties in their efficient generation and stable maintenance. This study aims to develop chemically defined systems for robust generation and stable propagation of hPSC-derived CVPCs by modulating the key early developmental pathways involved in human cardiovascular specification and CVPC self-renewal. Herein we report that a combination of bone morphogenetic protein 4 (BMP4),glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 and ascorbic acid is sufficient to rapidly convert monolayer-cultured hPSCs,including hESCs and hiPSCs,into homogeneous CVPCs in a chemically defined medium under feeder- and serum-free culture conditions. These CVPCs stably self-renewed under feeder- and serum-free conditions and expanded over 10(7)-fold when the differentiation-inducing signals from BMP,GSK3 and Activin/Nodal pathways were simultaneously eliminated. Furthermore,these CVPCs exhibited expected genome-wide molecular features of CVPCs,retained potentials to generate major cardiovascular lineages including cardiomyocytes,smooth muscle cells and endothelial cells in vitro,and were non-tumorigenic in vivo. Altogether,the established systems reported here permit efficient generation and stable maintenance of hPSC-derived CVPCs,which represent a powerful tool to study early embryonic cardiovascular development and provide a potentially safe source of cells for myocardial regenerative medicine.
View Publication
Warren L et al. (NOV 2010)
Cell stem cell 7 5 618--630
Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA
Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover,safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple,nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe,efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research,disease modeling,and regenerative medicine. ?? 2010 Elsevier Inc.
View Publication
McBrian MA et al. (JAN 2013)
Molecular cell 49 2 310--321
Histone Acetylation Regulates Intracellular pH
Differences in global levels of histone acetylation occur in normal and cancer cells,although the reason why cells regulate these levels has been unclear. Here we demonstrate a role for histone acetylation in regulating intracellular pH (pH(i)). As pH(i) decreases,histones are globally deacetylated by histone deacetylases (HDACs),and the released acetate anions are coexported with protons out of the cell by monocarboxylate transporters (MCTs),preventing further reductions in pH(i). Conversely,global histone acetylation increases as pH(i) rises,such as when resting cells are induced to proliferate. Inhibition of HDACs or MCTs decreases acetate export and lowers pH(i),particularly compromising pH(i) maintenance in acidic environments. Global deacetylation at low pH is reflected at a genomic level by decreased abundance and extensive redistribution of acetylation throughout the genome. Thus,acetylation of chromatin functions as a rheostat to regulate pH(i) with important implications for mechanism of action and therapeutic use of HDAC inhibitors.
View Publication
Jiang W et al. (JAN 2012)
Cell Research 23 1 122--130
Histone H3K27me3 demethylases KDM6A and KDM6B modulate definitive endoderm differentiation from human ESCs by regulating WNT signaling pathway
Bhanu NV et al. (FEB 2016)
Proteomics 16 3 448--458
Histone modification profiling reveals differential signatures associated with human embryonic stem cell self-renewal and differentiation
In this study,we trace developmental stages using epigenome changes in human embryonic stem cells (hESCs) treated with drugs modulating either self-renewal or differentiation. Based on microscopy,qPCR and flow cytometry,we classified the treatment outcome as inducing pluripotency (hESC,flurbiprofen and gatifloxacin),mesendoderm (sinomenine),differentiation (cyamarin,digoxin,digitoxin,selegeline and theanine) and lineage-commitment (RA). When we analyzed histone PTMs that imprinted these gene and protein expressions,the above classification was reassorted. Hyperacetylation at H3K4,9,14,18,56 and 122 as well as H4K5,8,12 and 16 emerged as the pluripotency signature of hESCs. Methylations especially of H3 at K9,K20,K27 and K36 characterized differentiation initiation as seen in no-drug control and fluribiprofen. Sinomenine-treated cells clustered close to differentiation initiators"�
View Publication
Itahana Y et al. ( 2016)
Scientific reports 6 28112
Histone modifications and p53 binding poise the p21 promoter for activation in human embryonic stem cells.
The high proliferation rate of embryonic stem cells (ESCs) is thought to arise partly from very low expression of p21. However,how p21 is suppressed in ESCs has been unclear. We found that p53 binds to the p21 promoter in human ESCs (hESCs) as efficiently as in differentiated human mesenchymal stem cells,however it does not promote p21 transcription in hESCs. We observed an enrichment for both the repressive histone H3K27me3 and activating histone H3K4me3 chromatin marks at the p21 locus in hESCs,suggesting it is a suppressed,bivalent domain which overrides activation by p53. Reducing H3K27me3 methylation in hESCs rescued p21 expression,and ectopic expression of p21 in hESCs triggered their differentiation. Further,we uncovered a subset of bivalent promoters bound by p53 in hESCs that are similarly induced upon differentiation in a p53-dependent manner,whereas p53 promotes the transcription of other target genes which do not show an enrichment of H3K27me3 in ESCs. Our studies reveal a unique epigenetic strategy used by ESCs to poise undesired p53 target genes,thus balancing the maintenance of pluripotency in the undifferentiated state with a robust response to differentiation signals,while utilizing p53 activity to maintain genomic stability and homeostasis in ESCs.
View Publication
Heintzman ND et al. (MAY 2009)
Nature 459 7243 108--12
Histone modifications at human enhancers reflect global cell-type-specific gene expression.
The human body is composed of diverse cell types with distinct functions. Although it is known that lineage specification depends on cell-specific gene expression,which in turn is driven by promoters,enhancers,insulators and other cis-regulatory DNA sequences for each gene,the relative roles of these regulatory elements in this process are not clear. We have previously developed a chromatin-immunoprecipitation-based microarray method (ChIP-chip) to locate promoters,enhancers and insulators in the human genome. Here we use the same approach to identify these elements in multiple cell types and investigate their roles in cell-type-specific gene expression. We observed that the chromatin state at promoters and CTCF-binding at insulators is largely invariant across diverse cell types. In contrast,enhancers are marked with highly cell-type-specific histone modification patterns,strongly correlate to cell-type-specific gene expression programs on a global scale,and are functionally active in a cell-type-specific manner. Our results define over 55,000 potential transcriptional enhancers in the human genome,significantly expanding the current catalogue of human enhancers and highlighting the role of these elements in cell-type-specific gene expression.
View Publication
Palmer DJ et al. ( 2016)
Molecular therapy. Nucleic acids 5 e372
Homology Requirements for Efficient, Footprintless Gene Editing at the CFTR Locus in Human iPSCs with Helper-dependent Adenoviral Vectors.
Helper-dependent adenoviral vectors mediate high efficiency gene editing in induced pluripotent stem cells without needing a designer nuclease thereby avoiding off-target cleavage. Because of their large cloning capacity of 37 kb,helper-dependent adenoviral vectors with long homology arms are used for gene editing. However,this makes vector construction and recombinant analysis difficult. Conversely,insufficient homology may compromise targeting efficiency. Thus,we investigated the effect of homology length on helper-dependent adenoviral vector targeting efficiency at the cystic fibrosis transmembrane conductance regulator locus in induced pluripotent stem cells and found a positive correlation. With 23.8 and 21.4 kb of homology,the frequencies of targeted recombinants were 50-64.6% after positive selection for vector integration,and 97.4-100% after negative selection against random integrations. With 14.8 kb,the frequencies were 26.9-57.1% after positive selection and 87.5-100% after negative selection. With 9.6 kb,the frequencies were 21.4 and 75% after positive and negative selection,respectively. With only 5.6 kb,the frequencies were 5.6-16.7% after positive selection and 50% after negative selection,but these were more than high enough for efficient identification and isolation of targeted clones. Furthermore,we demonstrate helper-dependent adenoviral vector-mediated footprintless correction of cystic fibrosis transmembrane conductance regulator mutations through piggyBac excision of the selectable marker. However,low frequencies (≤ 1 × 10(-3)) necessitated negative selection for piggyBac-excision product isolation.
View Publication
Lister R et al. (MAR 2011)
Nature 471 7336 68--73
Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells.
Induced pluripotent stem cells (iPSCs) offer immense potential for regenerative medicine and studies of disease and development. Somatic cell reprogramming involves epigenomic reconfiguration,conferring iPSCs with characteristics similar to embryonic stem (ES) cells. However,it remains unknown how complete the reestablishment of ES-cell-like DNA methylation patterns is throughout the genome. Here we report the first whole-genome profiles of DNA methylation at single-base resolution in five human iPSC lines,along with methylomes of ES cells,somatic cells,and differentiated iPSCs and ES cells. iPSCs show significant reprogramming variability,including somatic memory and aberrant reprogramming of DNA methylation. iPSCs share megabase-scale differentially methylated regions proximal to centromeres and telomeres that display incomplete reprogramming of non-CG methylation,and differences in CG methylation and histone modifications. Lastly,differentiation of iPSCs into trophoblast cells revealed that errors in reprogramming CG methylation are transmitted at a high frequency,providing an iPSC reprogramming signature that is maintained after differentiation.
View Publication
Easley CA et al. (JUN 2012)
Cellular reprogramming 14 3 193--203
Human amniotic epithelial cells are reprogrammed more efficiently by induced pluripotency than adult fibroblasts.
Cellular reprogramming from adult somatic cells into an embryonic cell-like state,termed induced pluripotency,has been achieved in several cell types. However,the ability to reprogram human amniotic epithelial cells (hAECs),an abundant cell source derived from discarded placental tissue,has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs),but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore,AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation,including NEUROD1 and SOX17,markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs,we analyzed global DNA methylation,global histone acetylation,and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts,hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise,quantitative gene expression analyses show that hAECs endogenously express OCT4,SOX2,KLF4,and c-MYC,all four factors used in cellular reprogramming. Thus,hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents.
View Publication
Sugii S et al. (FEB 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 8 3558--63
Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells.
Although adipose tissue is an expandable and readily attainable source of proliferating,multipotent stem cells,its potential for use in regenerative medicine has not been extensively explored. Here we report that adult human and mouse adipose-derived stem cells can be reprogrammed to induced pluripotent stem (iPS) cells with substantially higher efficiencies than those reported for human and mouse fibroblasts. Unexpectedly,both human and mouse iPS cells can be obtained in feeder-free conditions. We discovered that adipose-derived stem cells intrinsically express high levels of pluripotency factors such as basic FGF,TGFbeta,fibronectin,and vitronectin and can serve as feeders for both autologous and heterologous pluripotent cells. These results demonstrate a great potential for adipose-derived cells in regenerative therapeutics and as a model for studying the molecular mechanisms of feeder-free iPS generation and maintenance.
View Publication
Nakamura H et al. (OCT 2013)
Herpesviridae 4 1 2
Human cytomegalovirus induces apoptosis in neural stem/progenitor cells derived from induced pluripotent stem cells by generating mitochondrial dysfunction and endoplasmic reticulum stress
BACKGROUND Congenital human cytomegalovirus (HCMV) infection,a leading cause of birth defects,is most often manifested as neurological disorders. The pathogenesis of HCMV-induced neurological disorders is,however,largely unresolved,primarily because of limited availability of model systems to analyze the effects of HCMV infection on neural cells. METHODS An induced pluripotent stem cell (iPSC) line was established from the human fibroblast line MRC5 by introducing the Yamanaka's four factors and then induced to differentiate into neural stem/progenitor cells (NSPCs) by dual inhibition of the SMAD signaling pathway using Noggin and SB-431542. RESULTS iPSC-derived NSPCs (NSPC/iPSCs) were susceptible to HCMV infection and allowed the expression of both early and late viral gene products. HCMV-infected NSPC/iPSCs underwent apoptosis with the activation of caspase-3 and -9 as well as positive staining by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). Cytochrome c release from mitochondria to cytosol was observed in these cells,indicating the involvement of mitochondrial dysfunction in their apoptosis. In addition,phosphorylation of proteins involved in the unfolded protein response (UPR),such as PKR-like eukaryotic initiation factor 2a kinase (PERK),c-Jun NH2-terminal kinase (JNK),inositol-requiring enzyme 1 (IRE1),and the alpha subunit of eukaryotic initiation factor 2 (eIF2$$) was observed in HCMV-infected NSPC/iPSCs. These results,coupled with the finding of increased expression of mRNA encoding the C/EBP-homologous protein (CHOP) and the detection of a spliced form of X-box binding protein 1 (XBP1) mRNA,suggest that endoplasmic reticulum (ER) stress is also involved in HCMV-induced apoptosis of these cells. CONCLUSIONS iPSC-derived NSPCs are thought to be a useful model to study HCMV neuropathogenesis and to analyze the mechanisms of HCMV-induced apoptosis in neural cells.
View Publication