Valamehr B et al. (SEP 2008)
Proceedings of the National Academy of Sciences of the United States of America 105 38 14459--64
Hydrophobic surfaces for enhanced differentiation of embryonic stem cell-derived embryoid bodies.
With their unique ability to differentiate into all cell types,embryonic stem (ES) cells hold great therapeutic promise. To improve the efficiency of embryoid body (EB)-mediated ES cell differentiation,we studied murine EBs on the basis of their size and found that EBs with an intermediate size (diameter 100-300 microm) are the most proliferative,hold the greatest differentiation potential,and have the lowest rate of cell death. In an attempt to promote the formation of this subpopulation,we surveyed several biocompatible substrates with different surface chemical parameters and identified a strong correlation between hydrophobicity and EB development. Using self-assembled monolayers of various lengths of alkanethiolates on gold substrates,we directly tested this correlation and found that surfaces that exhibit increasing hydrophobicity enrich for the intermediate-size EBs. When this approach was applied to the human ES cell system,similar phenomena were observed. Our data demonstrate that hydrophobic surfaces serve as a platform to deliver uniform EB populations and may significantly improve the efficiency of ES cell differentiation.
View Publication
Dienelt A and zur Nieden NI (MAR 2011)
Stem cells and development 20 3 465--474
Hyperglycemia impairs skeletogenesis from embryonic stem cells by affecting osteoblast and osteoclast differentiation.
High maternal blood glucose levels caused by diabetes mellitus can irreversibly lead to maldevelopment of the growing fetus with specific effects on the skeleton. To date,it remains controversial at which stage embryonic development is affected. Specifically during embryonic bone development,it is unclear whether diminished bone mineral density is caused by reduced osteoblast or rather enhanced osteoclast function. Therefore,the aim of this study was to characterize the growth as well as the skeletal differentiation capability of pluripotent embryonic stem cells (ESCs),which may serve as an in vitro model for all stages of embryonic development,when cultured in diabetic levels of D-glucose (4.5 g/L) versus physiological levels (1.0 g/L). Results showed that cells cultivated in physiological glucose gave rise to a higher number of colonies with an undifferentiated character as compared to cells grown in diabetic glucose concentrations. In contrast,these cultures were characterized by slightly decreased expression of proteins associated with the stem cell state. Furthermore,differentiation of ESCs into osteoblasts and osteoclasts was favored in physiological glucose concentrations,demonstrated by an increased matrix calcification,enhanced expression of cell-type-specific mRNAs,as well as activity of the cell-type-specific enzymes,alkaline,and tartrate resistant acidic phosphatase. In fact,this pattern was noted in murine as well as in primate ESCs. Our study suggests that an interplay between both the osteoblast and the osteoclast lineage is needed for proper skeletal development to occur,which seems impaired in hyperglycemic conditions.
View Publication
Spike BT et al. (SEP 2007)
Blood 110 6 2173--81
Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse.
Definitive erythropoiesis occurs in islands composed of a central macrophage in contact with differentiating erythroblasts. Erythroid maturation including enucleation can also occur in the absence of macrophages both in vivo and in vitro. We reported previously that loss of Rb induces cell-autonomous defects in red cell maturation under stress conditions,while other reports have suggested that the failure of Rb-null erythroblasts to enucleate is due to defects in associated macrophages. Here we show that erythropoietic islands are disrupted by hypoxic stress,such as occurs in the Rb-null fetal liver,that Rb(-/-) macrophages are competent for erythropoietic island formation in the absence of exogenous stress and that enucleation defects persist in Rb-null erythroblasts irrespective of macrophage function.
View Publication
Cordeiro JM et al. (JUL 2013)
Journal of Molecular and Cellular Cardiology 60 1 36--46
Identification and characterization of a transient outward K+ current in human induced pluripotent stem cell-derived cardiomyocytes
Background: The ability to recapitulate mature adult phenotypes is critical to the development of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM) as models of disease. The present study examines the characteristics of the transient outward current (Ito) and its contribution to the hiPSC-CM action potential (AP). Method: Embryoid bodies were made from a hiPS cell line reprogrammed with Oct4,Nanog,Lin28 and Sox2. Sharp microelectrodes were used to record APs from beating-clusters (BC) and patch-clamp techniques were used to record Ito in single hiPSC-CM. mRNA levels of Kv1.4,KChIP2 and Kv4.3 were quantified from BCs. Results: BCs exhibited spontaneous beating (60.5??2.6bpm) and maximum-diastolic-potential (MDP) of 67.8??0.8mV (n=155). A small 4-aminopyridine-sensitive phase-1-repolarization was observed in only 6/155 BCs. A robust Ito was recorded in the majority of cells (13.7??1.9 pA/pF at +40mV; n=14). Recovery of Ito from inactivation (at -80mV) showed slow kinetics (??1=200??110ms (12%) and ??2=2380??240ms (80%)) accounting for its minimal contribution to the AP. Transcript data revealed relatively high expression of Kv1.4 and low expression of KChIP2 compared to human native ventricular tissues. Mathematical modeling predicted that restoration of IK1 to normal levels would result in a more negative MDP and a prominent phase-1-repolarization. Conclusion: The slow recovery kinetics of Ito coupled with a depolarized MDP account for the lack of an AP notch in the majority of hiPSC-CM. These characteristics reveal a deficiency for the development of in vitro models of inherited cardiac arrhythmia syndromes in which Ito-induced AP notch is central to the disease phenotype. ?? 2013 Elsevier Ltd.
View Publication
Parfitt DA et al. (JUN 2016)
Cell stem cell 18 6 769--781
Identification and Correction of Mechanisms Underlying Inherited Blindness in Human iPSC-Derived Optic Cups
Summary Leber congenital amaurosis (LCA) is an inherited retinal dystrophy that causes childhood blindness. Photoreceptors are especially sensitive to an intronic mutation in the cilia-related gene CEP290,which causes missplicing and premature termination,but the basis of this sensitivity is unclear. Here,we generated differentiated photoreceptors in three-dimensional optic cups and retinal pigment epithelium (RPE) from iPSCs with this common CEP290 mutation to investigate disease mechanisms and evaluate candidate therapies. iPSCs differentiated normally into RPE and optic cups,despite abnormal CEP290 splicing and cilia defects. The highest levels of aberrant splicing and cilia defects were observed in optic cups,explaining the retinal-specific manifestation of this CEP290 mutation. Treating optic cups with an antisense morpholino effectively blocked aberrant splicing and restored expression of full-length CEP290,restoring normal cilia-based protein trafficking. These results provide a mechanistic understanding of the retina-specific phenotypes in CEP290 LCA patients and potential strategies for therapeutic intervention.
View Publication
Sagi I et al. (NOV 2016)
Nature protocols 11 11 2274--2286
Identification and propagation of haploid human pluripotent stem cells.
Haploid human pluripotent stem cells (PSCs) integrate haploidy and pluripotency,providing a novel system for functional genomics and developmental research in humans. We have recently derived haploid human embryonic stem cells (ESCs) by parthenogenesis and demonstrated their wide differentiation potential and applicability for genetic screening. Because haploid cells can spontaneously become diploid,their enrichment at an early passage is key for successful derivation. In this protocol,we describe two methodologies,namely metaphase spread analysis and cell sorting,for the identification of haploid human cells within parthenogenetic ESC lines. The cell sorting approach also enables the isolation of haploid cells at low percentages,as well as the maintenance of highly enriched haploid ESC lines throughout passaging. The isolation of essentially pure populations of haploid human ESCs by this protocol requires basic PSC culture expertise and can be achieved within 4-6 weeks.
View Publication
Kawasaki Y et al. (FEB 2017)
Arthritis & rheumatology (Hoboken,N.J.) 69 2 447--459
Identification of a High-Frequency Somatic NLRC4 Mutation as a Cause of Autoinflammation by Pluripotent Cell-Based Phenotype Dissection.
OBJECTIVE To elucidate the genetic background of a patient with neonatal-onset multisystem inflammatory disease (NOMID) with no NLRP3 mutation. METHODS A Japanese male child diagnosed as having NOMID was studied. The patient did not have any NLRP3 mutation,even as low-frequency mosaicism. We performed whole-exome sequencing on the patient and his parents. Induced pluripotent stem cells (iPSCs) were established from the patient's fibroblasts. The iPSCs were then differentiated into monocyte lineage to evaluate the cytokine profile. RESULTS We established multiple iPSC clones from a patient with NOMID and incidentally found that the phenotypes of monocytes from iPSC clones were heterogeneous and could be grouped into disease and normal phenotypes. Because each iPSC clone was derived from a single somatic cell,we hypothesized that the patient had somatic mosaicism of an interleukin-1β-related gene. Whole-exome sequencing of both representative iPSC clones and the patient's blood revealed a novel heterozygous NLRC4 mutation,p.T177A (c.529AtextgreaterG),as a specific mutation in diseased iPSC clones. Knockout of the NLRC4 gene using the clustered regularly interspaced short palindromic repeat/Cas9 system in a mutant iPSC clone abrogated the pathogenic phenotype. CONCLUSION Our findings indicate that the patient has somatic mosaicism of a novel NLRC4 mutation. To our knowledge,this is the first case showing that somatic mutation of NLRC4 causes autoinflammatory symptoms compatible with NOMID. The present study demonstrates the significance of prospective genetic screening combined with iPSC-based phenotype dissection for individualized diagnoses.
View Publication
Kolle G et al. (OCT 2009)
Stem Cells 27 10 2446--56
Identification of human embryonic stem cell surface markers by combined membrane-polysome translation state array analysis and immunotranscriptional profiling.
Surface marker expression forms the basis for characterization and isolation of human embryonic stem cells (hESCs). Currently,there are few well-defined protein epitopes that definitively mark hESCs. Here we combine immunotranscriptional profiling of hESC lines with membrane-polysome translation state array analysis (TSAA) to determine the full set of genes encoding potential hESC surface marker proteins. Three independently isolated hESC lines (HES2,H9,and MEL1) grown under feeder and feeder-free conditions were sorted into subpopulations by fluorescence-activated cell sorting based on coimmunoreactivity to the hESC surface markers GCTM-2 and CD9. Colony-forming assays confirmed that cells displaying high coimmunoreactivity to GCTM-2 and CD9 constitute an enriched subpopulation displaying multiple stem cell properties. Following microarray profiling,820 genes were identified that were common to the GCTM-2(high)/CD9(high) stem cell-like subpopulation. Membrane-polysome TSAA analysis of hESCs identified 1,492 mRNAs encoding actively translated plasma membrane and secreted proteins. Combining these data sets,88 genes encode proteins that mark the pluripotent subpopulation,of which only four had been previously reported. Cell surface immunoreactivity was confirmed for two of these markers: TACSTD1/EPCAM and CDH3/P-Cadherin,with antibodies for EPCAM able to enrich for pluripotent hESCs. This comprehensive listing of both hESCs and spontaneous differentiation-associated transcripts and survey of translated membrane-bound and secreted proteins provides a valuable resource for future study into the role of the extracellular environment in both the maintenance of pluripotency and directed differentiation.
View Publication
Kurian L et al. (APR 2015)
Circulation 131 14 1278--1290
Identification of novel long noncoding RNAs underlying vertebrate cardiovascular development.
BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as critical epigenetic regulators with important functions in development and disease. Here,we sought to identify and functionally characterize novel lncRNAs critical for vertebrate development. METHODS AND RESULTS: By relying on human pluripotent stem cell differentiation models,we investigated lncRNAs differentially regulated at key steps during human cardiovascular development with a special focus on vascular endothelial cells. RNA sequencing led to the generation of large data sets that serve as a gene expression roadmap highlighting gene expression changes during human pluripotent cell differentiation. Stage-specific analyses led to the identification of 3 previously uncharacterized lncRNAs,TERMINATOR,ALIEN,and PUNISHER,specifically expressed in undifferentiated pluripotent stem cells,cardiovascular progenitors,and differentiated endothelial cells,respectively. Functional characterization,including localization studies,dynamic expression analyses,epigenetic modification monitoring,and knockdown experiments in lower vertebrates,as well as murine embryos and human cells,confirmed a critical role for each lncRNA specific for each analyzed developmental stage. CONCLUSIONS: We have identified and functionally characterized 3 novel lncRNAs involved in vertebrate and human cardiovascular development,and we provide a comprehensive transcriptomic roadmap that sheds new light on the molecular mechanisms underlying human embryonic development,mesodermal commitment,and cardiovascular specification.
View Publication
Lu B et al. (MAY 2013)
Nature Neuroscience 16 5 562--570
Identification of NUB1 as a suppressor of mutant Huntingtin toxicity via enhanced protein clearance
Huntington's disease is caused by expanded CAG repeats in HTT,conferring toxic gain of function on mutant HTT (mHTT) protein. Reducing mHTT amounts is postulated as a strategy for therapeutic intervention. We conducted genome-wide RNA interference screens for genes modifying mHTT abundance and identified 13 hits. We tested 10 in vivo in a Drosophila melanogaster Huntington's disease model,and 6 exhibited activity consistent with the in vitro screening results. Among these,negative regulator of ubiquitin-like protein 1 (NUB1) overexpression lowered mHTT in neuronal models and rescued mHTT-induced death. NUB1 reduces mHTT amounts by enhancing polyubiquitination and proteasomal degradation of mHTT protein. The process requires CUL3 and the ubiquitin-like protein NEDD8 necessary for CUL3 activation. As a potential approach to modulating NUB1 for treatment,interferon-β lowered mHTT and rescued neuronal toxicity through induction of NUB1. Thus,we have identified genes modifying endogenous mHTT using high-throughput screening and demonstrate NUB1 as an exemplar entry point for therapeutic intervention of Huntington's disease.
View Publication
Kumagai H et al. (MAY 2013)
Biochemical and Biophysical Research Communications 434 4 710--716
Identification of small molecules that promote human embryonic stem cell self-renewal
Human embryonic stem cells (hESCs) and induced pluripotent cells have the potential to provide an unlimited source of tissues for regenerative medicine. For this purpose,development of defined/xeno-free culture systems under feeder-free conditions is essential for the expansion of hESCs. Most defined/xeno-free media for the culture of hESCs contain basic fibroblast growth factor (bFGF). Therefore,bFGF is thought to have an almost essential role for the expansion of hESCs in an undifferentiated state. Here,we report identification of small molecules,some of which were neurotransmitter antagonists (trimipramine and ethopropazine),which promote long-term hESC self-renewal without bFGF in the medium. The hESCs maintained high expression levels of pluripotency markers,had a normal karyotype after 20 passages,and could differentiate into all three germ layers. ?? 2013 Elsevier Inc.
View Publication
Conesa C et al. (MAR 2012)
Stem Cell Reviews and Reports 8 1 116--127
Identification of specific pluripotent stem cell death--inducing small molecules by chemical screening.
A potential application of embryonic and inducible pluripotent stem cells for the therapy of degenerative diseases involves pure somatic cells,free of tumorigenic undifferentiated embryonic and inducible pluripotent stem cells. In complex collections of chemicals with pharmacological potential we expect to find molecules able to induce specific pluripotent stem cell death,which could be used in some cell therapy settings to eliminate undifferentiated cells. Therefore,we have screened a chemical library of 1120 small chemicals to identify compounds that induce specifically apoptotic cell death in undifferentiated mouse embryonic stem cells (ESCs). Interestingly,three compounds currently used as clinically approved drugs,nortriptyline,benzethonium chloride and methylbenzethonium chloride,induced differential effects in cell viability in ESCs versus mouse embryonic fibroblasts (MEFs). Nortriptyline induced apoptotic cell death in MEFs but not in ESCs,whereas benzethonium and methylbenzethonium chloride showed the opposite effect. Nortriptyline,a tricyclic antidepressant,has also been described as a potent inhibitor of mitochondrial permeability transition,one of two major mechanisms involved in mitochondrial membrane permeabilization during apoptosis. Benzethonium chloride and methylbenzethonium chloride are quaternary ammonium salts used as antimicrobial agents with broad spectrum and have also been described as anticancer agents. A similar effect of benzethonium chloride was observed in human induced pluripotent stem cells (hiPSCs) when compared to both primary human skin fibroblasts and an established human fibroblast cell line. Human fibroblasts and hiPSCs were similarly resistant to nortriptyline,although with a different behavior. Our results indicate differential sensitivity of ESCs,hiPSCs and fibroblasts to certain chemical compounds,which might have important applications in the stem cell-based therapy by eliminating undifferentiated pluripotent stem cells from stem cell-derived somatic cells to prevent tumor formation after transplantation for therapy of degenerative diseases.
View Publication