In Vitro Modeling of Alcohol-Induced Liver Injury using Human-Induced Pluripotent Stem Cells
Alcohol consumption has long been associated with a majority of liver diseases and has been found to influence both fetal and adult liver functions. In spite of being one of the major causes of morbidity and mortality in the world,currently,there are no effective strategies that can prevent or treat alcoholic liver disease (ALD),due to a lack of human-relevant research models. Recent success in generation of functionally active mature hepatocyte-like cells from human-induced pluripotent cells (iPSCs) enables us to better understand the effects of alcohol on liver functions. Here,we describe the method and effect of alcohol exposure on multistage hepatic cell types derived from human iPSCs,in an attempt to recapitulate the early stages of liver tissue injury associated with ALD. We exposed different stages of iPSC-induced hepatic cells to ethanol at a pathophysiological concentration. In addition to stage-specific molecular markers,we measured several key cellular parameters of hepatocyte injury,including apoptosis,proliferation,and lipid accumulation.
View Publication
Islam I et al. ( 2016)
Stem cells international 2016 1659275
In Vitro Osteogenic Potential of Green Fluorescent Protein Labelled Human Embryonic Stem Cell-Derived Osteoprogenitors.
Cellular therapy using stem cells in bone regeneration has gained increasing interest. Various studies suggest the clinical utility of osteoprogenitors-like mesenchymal stem cells in bone regeneration. However,limited availability of mesenchymal stem cells and conflicting evidence on their therapeutic efficacy limit their clinical application. Human embryonic stem cells (hESCs) are potentially an unlimited source of healthy and functional osteoprogenitors (OPs) that could be utilized for bone regenerative applications. However,limited ability to track hESC-derived progenies in vivo greatly hinders translational studies. Hence,in this study,we aimed to establish hESC-derived OPs (hESC-OPs) expressing green fluorescent protein (GFP) and to investigate their osteogenic differentiation potential in vitro. We fluorescently labelled H9-hESCs using a plasmid vector encoding GFP. The GFP-expressing hESCs were differentiated into hESC-OPs. The hESC-OPs(GFP+) stably expressed high levels of GFP,CD73,CD90,and CD105. They possessed osteogenic differentiation potential in vitro as demonstrated by increased expression of COL1A1,RUNX2,OSTERIX,and OPG transcripts and mineralized nodules positive for Alizarin Red and immunocytochemical expression of osteocalcin,alkaline phosphatase,and collagen-I. In conclusion,we have demonstrated that fluorescently labelled hESC-OPs can maintain their GFP expression for the long term and their potential for osteogenic differentiation in vitro. In future,these fluorescently labelled hESC-OPs could be used for noninvasive assessment of bone regeneration,safety,and therapeutic efficacy.
View Publication
Takayama Y and Kida YS (FEB 2016)
PloS one 11 2 e0148559
In Vitro Reconstruction of Neuronal Networks Derived from Human iPS Cells Using Microfabricated Devices.
Morphology and function of the nervous system is maintained via well-coordinated processes both in central and peripheral nervous tissues,which govern the homeostasis of organs/tissues. Impairments of the nervous system induce neuronal disorders such as peripheral neuropathy or cardiac arrhythmia. Although further investigation is warranted to reveal the molecular mechanisms of progression in such diseases,appropriate model systems mimicking the patient-specific communication between neurons and organs are not established yet. In this study,we reconstructed the neuronal network in vitro either between neurons of the human induced pluripotent stem (iPS) cell derived peripheral nervous system (PNS) and central nervous system (CNS),or between PNS neurons and cardiac cells in a morphologically and functionally compartmentalized manner. Networks were constructed in photolithographically microfabricated devices with two culture compartments connected by 20 microtunnels. We confirmed that PNS and CNS neurons connected via synapses and formed a network. Additionally,calcium-imaging experiments showed that the bundles originating from the PNS neurons were functionally active and responded reproducibly to external stimuli. Next,we confirmed that CNS neurons showed an increase in calcium activity during electrical stimulation of networked bundles from PNS neurons in order to demonstrate the formation of functional cell-cell interactions. We also confirmed the formation of synapses between PNS neurons and mature cardiac cells. These results indicate that compartmentalized culture devices are promising tools for reconstructing network-wide connections between PNS neurons and various organs,and might help to understand patient-specific molecular and functional mechanisms under normal and pathological conditions.
View Publication
Matsa E and Denning C (OCT 2012)
Journal of cardiovascular translational research 5 5 581--92
In vitro uses of human pluripotent stem cell-derived cardiomyocytes.
Functional cardiomyocytes can be efficiently derived from human pluripotent stem cells (hPSCs),which collectively include embryonic and induced pluripotent stem cells. This cellular platform presents exciting new opportunities for development of pharmacologically relevant in vitro screens to detect cardiotoxicity,validate novel drug candidates in preclinical trials and understand complex congenital cardiovascular disorders,to advance current clinical therapies. Here,we discuss the progress and impediments the field has faced in using hPSC-derived cardiomyocytes for these in vitro applications,and highlight that rigorous protocol optimisation and standardisation,scalability and automation are remaining obstacles for the generation of pure,mature and clinically relevant hPSC cardiomyocytes.
View Publication
Levi B et al. (DEC 2012)
Proceedings of the National Academy of Sciences of the United States of America 109 50 20379--84
In vivo directed differentiation of pluripotent stem cells for skeletal regeneration.
Pluripotent cells represent a powerful tool for tissue regeneration,but their clinical utility is limited by their propensity to form teratomas. Little is known about their interaction with the surrounding niche following implantation and how this may be applied to promote survival and functional engraftment. In this study,we evaluated the ability of an osteogenic microniche consisting of a hydroxyapatite-coated,bone morphogenetic protein-2-releasing poly-L-lactic acid scaffold placed within the context of a macroenvironmental skeletal defect to guide in vivo differentiation of both embryonic and induced pluripotent stem cells. In this setting,we found de novo bone formation and participation by implanted cells in skeletal regeneration without the formation of a teratoma. This finding suggests that local cues from both the implanted scaffold/cell micro- and surrounding macroniche may act in concert to promote cellular survival and the in vivo acquisition of a terminal cell fate,thereby allowing for functional engraftment of pluripotent cells into regenerating tissue.
View Publication
Hexum MK et al. (JAN 2011)
Methods in molecular biology (Clifton,N.J.) 767 433--47
In vivo evaluation of putative hematopoietic stem cells derived from human pluripotent stem cells.
Efficient derivation and isolation of hematopoietic stem cells (HSCs) from human pluripotent stem cell (hPSC) populations remains a major goal in the field of developmental hematopoiesis. These enticing pluripotent stem cells (comprising both human embryonic stem cells and induced pluripotent stem cells) have been successfully used to generate a wide array of hematopoietic cells in vitro,from primitive hematoendothelial precursors to mature myeloid,erythroid,and lymphoid lineage cells. However,to date,PSC-derived cells have demonstrated only limited potential for long-term multilineage hematopoietic engraftment in vivo - the test by which putative HSCs are defined. Successful generation and characterization of HSCs from hPSCs not only requires an efficient in vitro differentiation system that provides insight into the developmental fate of hPSC-derived cells,but also necessitates an in vivo engraftment model that allows identification of specific mechanisms that hinder or promote hematopoietic engraftment. In this chapter,we will describe a method that utilizes firefly luciferase-expressing hPSCs and bioluminescent imaging to noninvasively track the survival,proliferation,and migration of transplanted hPSC-derived cells. Combined with lineage and functional analyses of engrafted cells,this system is a useful tool to gain insight into the in vivo potential of hematopoietic cells generated from hPSCs.
View Publication
Liu H et al. (MAY 2011)
Science Translational Medicine 3 82 82ra39
In Vivo Liver Regeneration Potential of Human Induced Pluripotent Stem Cells from Diverse Origins
Human induced pluripotent stem cells (iPSCs) are a potential source of hepatocytes for liver transplantation to treat end-stage liver disease. In vitro differentiation of human iPSCs into hepatic cells has been achieved using a multi- stage differentiation protocol,but whether these cells are functional and capable of engrafting and regenerating diseased liver tissue is not clear. We show that human iPSC-derived hepatic cells at various differentiation stages can engraft the liver in a mouse transplantation model. Using the same differentiation and transplantation protocols,we also assessed the ability of human iPSCs derived from each of the three developmental germ layer tissues (that is,ectoderm,mesoderm,and endoderm) to regenerate mouse liver. These iPSC lines,with similar but distinct global DNA methylation patterns,differentiated into multistage hepatic cells with an efficiency similar to that of human embryonic stem cells. Human hepatic cells at various differentiation stages derived from iPSC lines of different origins successfully repopulated the liver tissue of mice with liver cirrhosis. They also secreted human-specific liver proteins into mouse blood at concentrations comparable to that of proteins secreted by human primary hepato- cytes. Our results demonstrate the engraftment and liver regenerative capabilities of human iPSC-derived multi- stage hepatic cells in vivo and suggest that human iPSCs of distinct origins and regardless of their parental epigenetic memory can efficiently differentiate along the hepatic lineage.
View Publication
Aw JGA et al. (MAY 2016)
Molecular cell 62 4 603--617
In Vivo Mapping of Eukaryotic RNA Interactomes Reveals Principles of Higher-Order Organization and Regulation
Identifying pairwise RNA-RNA interactions is key to understanding how RNAs fold and interact with other RNAs inside the cell. We present a high-throughput approach,sequencing of psoralen crosslinked,ligated,and selected hybrids (SPLASH),that maps pairwise RNA interactions in vivo with high sensitivity and specificity,genome-wide. Applying SPLASH to human and yeast transcriptomes revealed the diversity and dynamics of thousands of long-range intra- and intermolecular RNA-RNA interactions. Our analysis highlighted key structural features of RNA classes,including the modular organization of mRNAs,its impact on translation and decay,and the enrichment of long-range interactions in noncoding RNAs. Additionally,intermolecular mRNA interactions were organized into network clusters and were remodeled during cellular differentiation. We also identified hundreds of known and new snoRNA-rRNA binding sites,expanding our knowledge of rRNA biogenesis. These results highlight the underexplored complexity of RNA interactomes and pave the way to better understanding how RNA organization impacts biology.
View Publication
Brandl C et al. (SEP 2014)
NeuroMolecular Medicine 16 3 551--564
In-depth characterisation of Retinal Pigment Epithelium (RPE) cells derived from human induced pluripotent stem cells (hiPSC).
Induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) has widely been appreciated as a promising tool to model human ocular disease emanating from primary RPE pathology. Here,we describe the successful reprogramming of adult human dermal fibroblasts to iPSCs and their differentiation to pure expandable RPE cells with structural and functional features characteristic for native RPE. Fibroblast cultures were established from skin biopsy material and subsequently reprogrammed following polycistronic lentiviral transduction with OCT4,SOX2,KLF4 and L-Myc. Fibroblast-derived iPSCs showed typical morphology,chromosomal integrity and a distinctive stem cell marker profile. Subsequent differentiation resulted in expandable pigmented hexagonal RPE cells. The cells revealed stable RNA expression of mature RPE markers RPE65,RLBP and BEST1. Immunolabelling verified localisation of BEST1 at the basolateral plasma membrane,and scanning electron microscopy showed typical microvilli at the apical side of iPSC-derived RPE cells. Transepithelial resistance was maintained at high levels during cell culture indicating functional formation of tight junctions. Secretion capacity was demonstrated for VEGF-A. Feeding of porcine photoreceptor outer segments revealed the proper ability of these cells for phagocytosis. IPSC-derived RPE cells largely maintained these properties after cryopreservation. Together,our study underlines that adult dermal fibroblasts can serve as a valuable resource for iPSC-derived RPE with characteristics highly reminiscent of true RPE cells. This will allow its broad application to establish cellular models for RPE-related human diseases.
View Publication
Bratt-Leal A et al. (JAN 2011)
Biomaterials 32 1 48--56
Incorporation of biomaterials in multicellular aggregates modulates pluripotent stem cell differentiation.
Biomaterials are increasingly being used to engineer the biochemical and biophysical properties of the extracellular stem cell microenvironment in order to tailor niche characteristics and direct cell phenotype. To date,stem cell-biomaterial interactions have largely been studied by introducing stem cells into artificial environments,such as 2D cell culture on biomaterial surfaces,encapsulation of cell suspensions within hydrogel materials,or cell seeding on 3D polymeric scaffolds. In this study,microparticles fabricated from different materials,such as agarose,PLGA and gelatin,were stably integrated,in a dose-dependent manner,within aggregates of pluripotent stem cells (PSCs) prior to differentiation as a means to directly examine stem cell-biomaterial interactions in 3D. Interestingly,the presence of the materials within the stem cell aggregates differentially modulated the gene and protein expression patterns of several differentiation markers without adversely affecting cell viability. Microparticle incorporation within 3D stem cell aggregates can control the spatial presentation of extracellular environmental cues (i.e. soluble factors,extracellular matrix and intercellular adhesion molecules) as a means to direct the differentiation of stem cells for tissue engineering and regenerative medicine applications. In addition,these results suggest that the physical presence of microparticles within stem cell aggregates does not compromise PSC differentiation,but in fact the choice of biomaterials can impact the propensity of stem cells to adopt particular differentiated cell phenotypes.
View Publication
Wu J et al. (APR 2015)
Stem cells and development 24 7 892--903
Increased culture density is linked to decelerated proliferation, prolonged G1 phase, and enhanced propensity for differentiation of self-renewing human pluripotent stem cells.
Human pluripotent stem cells (hPSCs) display a very short G1 phase and rapid proliferation kinetics. Regulation of the cell cycle,which is linked to pluripotency and differentiation,is dependent on the stem cell environment,particularly on culture density. This link has been so far empirical and central to disparities in the growth rates and fractions of self-renewing hPSCs residing in different cycle phases. In this study,hPSC cycle progression in conjunction with proliferation and differentiation were comprehensively investigated for different culture densities. Cell proliferation decelerated significantly at densities beyond 50×10(4) cells/cm(2). Correspondingly,the G1 fraction increased from 25% up to 60% at densities greater than 40×10(4) cells/cm(2) while still hPSC pluripotency marker expression was maintained. In parallel,expression of the cycle inhibitor CDKN1A (p21) was increased,while that of p27 and p53 did not change significantly. After 4 days of culture in an unconditioned medium,greater heterogeneity was noted in the differentiation outcomes and was limited by reducing the density variation. A quantitative model was constructed for self-renewing and differentiating hPSC ensembles to gain a better understanding of the link between culture density,cycle progression,and stem cell state. Results for multiple hPSC lines and medium types corroborated experimental findings. Media commonly used for maintenance of self-renewing hPSCs exhibited the slowest kinetics of induction of differentiation (kdiff),while BMP4 supplementation led to 14-fold higher kdiff values. Spontaneous differentiation in a growth factor-free medium exhibited the largest variation in outcomes at different densities. In conjunction with the quantitative framework,our findings will facilitate rationalizing the selection of cultivation conditions for the generation of stem cell therapeutics.
View Publication
Vilchez D et al. (SEP 2012)
Nature 489 7415 304--308
Increased proteasome activity in human embryonic stem cells is regulated by PSMD11
Embryonic stem cells can replicate continuously in the absence of senescence and,therefore,are immortal in culture. Although genome stability is essential for the survival of stem cells,proteome stability may have an equally important role in stem-cell identity and function. Furthermore,with the asymmetric divisions invoked by stem cells,the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. Therefore,a firm understanding of how stem cells maintain their proteome is of central importance. Here we show that human embryonic stem cells (hESCs) exhibit high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11 (known as RPN-6 in Caenorhabditis elegans) and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. FOXO4,an insulin/insulin-like growth factor-I (IGF-I) responsive transcription factor associated with long lifespan in invertebrates,regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Proteasome inhibition in hESCs affects the expression of pluripotency markers and the levels of specific markers of the distinct germ layers. Our results suggest a new regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates to hESC function and identity.
View Publication