Loewer S et al. (DEC 2010)
Nature genetics 42 12 1113--7
Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.
The conversion of lineage-committed cells to induced pluripotent stem cells (iPSCs) by reprogramming is accompanied by a global remodeling of the epigenome,resulting in altered patterns of gene expression. Here we characterize the transcriptional reorganization of large intergenic non-coding RNAs (lincRNAs) that occurs upon derivation of human iPSCs and identify numerous lincRNAs whose expression is linked to pluripotency. Among these,we defined ten lincRNAs whose expression was elevated in iPSCs compared with embryonic stem cells,suggesting that their activation may promote the emergence of iPSCs. Supporting this,our results indicate that these lincRNAs are direct targets of key pluripotency transcription factors. Using loss-of-function and gain-of-function approaches,we found that one such lincRNA (lincRNA-RoR) modulates reprogramming,thus providing a first demonstration for critical functions of lincRNAs in the derivation of pluripotent stem cells.
View Publication
Want AJ et al. (JAN 2012)
Regenerative medicine 7 1 71--84
Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask.
Human pluripotent stem cells will likely be a significant part of the regenerative medicine-driven healthcare revolution. In order to realize this potential,culture processes must be standardized,scalable and able to produce clinically relevant cell numbers,whilst maintaining critical biological functionality. This review comprises a broad overview of important bioprocess considerations,referencing the development of biopharmaceutical processes in an effort to learn from current best practice in the field. Particular focus is given to the recent efforts to grow human pluripotent stem cells in microcarrier or aggregate suspension culture,which would allow geometric expansion of productive capacity were it to be fully realized. The potential of these approaches is compared with automation of traditional T-flask culture,which may provide a cost-effective platform for low-dose,low-incidence conditions or autologous therapies. This represents the first step in defining the full extent of the challenges facing bioprocess engineers in the exploitation of large-scale human pluripotent stem cell manufacture.
View Publication
Krawetz R et al. (AUG 2010)
Tissue engineering. Part C,Methods 16 4 573--582
Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors.
Since the derivation of human embryonic stem (hES) cells,their translation to clinical therapies has been met with several challenges,including the need for large-scale expansion and controlled differentiation processes. Suspension bioreactors are an effective alternative to static culture flasks as they enable the generation of clinically relevant cell numbers with greater efficacy in a controlled culture system. We,along with other groups,have developed bioreactor protocols for the expansion of pluripotent murine ES cells. Here we present a novel bioreactor protocol that yields a 25-fold expansion of hES cells over 6 days. Using immunofluorescence,flow cytometry,and teratoma formation assays,we demonstrated that these bioreactor cultures retained high levels of pluripotency and a normal karyotype. Importantly,the use of bioreactors enables the expansion of hES cells in the absence of feeder layers or matrices,which will facilitate the adaptation of good manufacturing process (GMP) standards to the development of hES cell therapies.
View Publication
D'Aiuto L et al. (OCT 2014)
Organogenesis 10 4 365--377
Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation.
Induced pluripotent stem cell (iPSC)-based technologies offer an unprecedented opportunity to perform high-throughput screening of novel drugs for neurological and neurodegenerative diseases. Such screenings require a robust and scalable method for generating large numbers of mature,differentiated neuronal cells. Currently available methods based on differentiation of embryoid bodies (EBs) or directed differentiation of adherent culture systems are either expensive or are not scalable. We developed a protocol for large-scale generation of neuronal stem cells (NSCs)/early neural progenitor cells (eNPCs) and their differentiation into neurons. Our scalable protocol allows robust and cost-effective generation of NSCs/eNPCs from iPSCs. Following culture in neurobasal medium supplemented with B27 and BDNF,NSCs/eNPCs differentiate predominantly into vesicular glutamate transporter 1 (VGLUT1) positive neurons. Targeted mass spectrometry analysis demonstrates that iPSC-derived neurons express ligand-gated channels and other synaptic proteins and whole-cell patch-clamp experiments indicate that these channels are functional. The robust and cost-effective differentiation protocol described here for large-scale generation of NSCs/eNPCs and their differentiation into neurons paves the way for automated high-throughput screening of drugs for neurological and neurodegenerative diseases.
View Publication
Rigamonti A et al. (JUN 2016)
Stem Cell Reports 6 6 993--1008
Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system
Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body,including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system,provides a platform for the screening of chemical libraries that affect these processes,and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However,defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner,with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells,exhibit spontaneous electrical activity,and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months,even without astrocyte feeder layers.
View Publication
Bhadriraju K et al. (JUL 2016)
Stem Cell Research 17 1 122--129
Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies
Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling,we examined textgreater 680 colonies from 3 different preparations of cells over 5 days each,generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies,correlation of colony characteristics with Oct4 expression,and identification of rare events.
View Publication
Panova AV et al. (APR 2013)
Acta Naturae 5 17 54--61
Late Replication of the Inactive X Chromosome Is Independent of the Compactness of Chromosome Territory in Human Pluripotent Stem Cells
Dosage compensation of the X chromosomes in mammals is performed via the formation of facultative heterochromatin on extra X chromosomes in female somatic cells. Facultative heterochromatin of the inactivated X (Xi),as well as constitutive heterochromatin,replicates late during the S-phase. It is generally accepted that Xi is always more compact in the interphase nucleus. The dense chromosomal folding has been proposed to define the late replication of Xi. In contrast to mouse pluripotent stem cells (PSCs),the status of X chromosome inactivation in human PSCs may vary significantly. Fluorescence in situ hybridization with a whole X-chromosome- specific DNA probe revealed that late-replicating Xi may occupy either compact or dispersed territory in human PSCs. Thus,the late replication of the Xi does not depend on the compactness of chromosome territory in human PSCs. However,the Xi reactivation and the synchronization in the replication timing of X chromosomes upon reprogramming are necessarily accompanied by the expansion of X chromosome territory.
View Publication
Zhang Z-N et al. (MAR 2016)
Proceedings of the National Academy of Sciences 113 12 201521255
Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction
Probing a wide range of cellular phenotypes in neurodevelopmental disorders using patient-derived neural progenitor cells (NPCs) can be facilitated by 3D assays,as 2D systems cannot entirely recapitulate the arrangement of cells in the brain. Here,we developed a previously unidentified 3D migration and differentiation assay in layered hydrogels to examine how these processes are affected in neurodevelopmental disorders,such as Rett syndrome. Our soft 3D system mimics the brain environment and accelerates maturation of neurons from human induced pluripotent stem cell (iPSC)-derived NPCs,yielding electrophysiologically active neurons within just 3 wk. Using this platform,we revealed a genotype-specific effect of methyl-CpG-binding protein-2 (MeCP2) dysfunction on iPSC-derived neuronal migration and maturation (reduced neurite outgrowth and fewer synapses) in 3D layered hydrogels. Thus,this 3D system expands the range of neural phenotypes that can be studied in vitro to include those influenced by physical and mechanical stimuli or requiring specific arrangements of multiple cell types.
View Publication
Speidel A et al. ( 2016)
PloS one 11 11 e0165949
Leucine-Rich Repeat Kinase 2 Influences Fate Decision of Human Monocytes Differentiated from Induced Pluripotent Stem Cells.
Mutations in Leucine-rich repeat kinase 2 (LRRK2) are strongly associated with familial Parkinson's disease (PD). High expression levels in immune cells suggest a role of LRRK2 in regulating the immune system. In this study,we investigated the effect of the LRRK2 (G2019S) mutation in monocytes,using a human stem cell-derived model expressing LRRK2 at endogenous levels. We discovered alterations in the differentiation pattern of LRRK2 mutant,compared to non-mutant isogenic controls,leading to accelerated monocyte production and a reduction in the non-classical CD14+CD16+ monocyte subpopulation in the LRRK2 mutant cells. LPS-treatment of the iPSC-derived monocytes significantly increased the release of pro-inflammatory cytokines,demonstrating a functional response without revealing any significant differences between the genotypes. Assessment of the migrational capacity of the differentiated monocytes revealed moderate deficits in LRRK2 mutant cells,compared to their respective controls. Our findings indicate a pivotal role of LRRK2 in hematopoietic fate decision,endorsing the involvement of the immune system in the development of PD.
View Publication
Vodyanik MA et al. (SEP 2006)
Blood 108 6 2095--105
Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures.
During hematopoietic differentiation of human embryonic stem cells (hESCs),early hematopoietic progenitors arise along with endothelial cells within the CD34(+) population. Although hESC-derived hematopoietic progenitors have been previously identified by functional assays,their phenotype has not been defined. Here,using hESC differentiation in coculture with OP9 stromal cells,we demonstrate that early progenitors committed to hematopoietic development could be identified by surface expression of leukosialin (CD43). CD43 was detected on all types of emerging clonogenic progenitors before expression of CD45,persisted on differentiating hematopoietic cells,and reliably separated the hematopoietic CD34(+) population from CD34(+)CD43(-)CD31(+)KDR(+) endothelial and CD34(+)CD43(-)CD31(-)KDR(-) mesenchymal cells. Furthermore,we demonstrated that the first-appearing CD34(+)CD43(+)CD235a(+)CD41a(+/-)CD45(-) cells represent precommitted erythro-megakaryocytic progenitors. Multipotent lymphohematopoietic progenitors were generated later as CD34(+)CD43(+)CD41a(-)CD235a(-)CD45(-) cells. These cells were negative for lineage-specific markers (Lin(-)),expressed KDR,VE-cadherin,and CD105 endothelial proteins,and expressed GATA-2,GATA-3,RUNX1,C-MYB transcription factors that typify initial stages of definitive hematopoiesis originating from endothelial-like precursors. Acquisition of CD45 expression by CD34(+)CD43(+)CD45(-)Lin(-) cells was associated with progressive myeloid commitment and a decrease of B-lymphoid potential. CD34(+)CD43(+)CD45(+)Lin(-) cells were largely devoid of VE-cadherin and KDR expression and had a distinct FLT3(high)GATA3(low)RUNX1(low)PU1(high)MPO(high)IL7RA(high) gene expression profile.
View Publication
Huang X et al. (DEC 2016)
Advanced materials (Deerfield Beach,Fla.) 28 48 10732--10737
Light-Patterned RNA Interference of 3D-Cultured Human Embryonic Stem Cells.
A new method of spatially controlled gene regulation in 3D-cultured human embryonic stem cells is developed using hollow gold nanoshells (HGNs) and near-infrared (NIR) light. Targeted cell(s) are discriminated from neighboring cell(s) by focusing NIR light emitted from a two-photon microscope. Irradiation of cells that have internalized HGNs releases surface attached siRNAs and leads to concomitant gene downregulation.
View Publication
White MP et al. (JAN 2013)
STEM CELLS 31 1 92--103
Limited Gene Expression Variation in Human Embryonic Stem Cell and Induced Pluripotent Stem Cell-Derived Endothelial Cells
Recent evidence suggests human embryonic stem cell (hESC) and induced pluripotent stem (iPS) cell lines have differences in their epigenetic marks and transcriptomes,yet the impact of these differences on subsequent terminally differentiated cells is less well understood. Comparison of purified,homogeneous populations of somatic cells derived from multiple independent human iPS and ES lines will be required to address this critical question. Here,we report a differentiation protocol based on embryonic development that consistently yields large numbers of endothelial cells (ECs) derived from multiple hESCs or iPS cells. Mesoderm differentiation of embryoid bodies was maximized,and defined growth factors were used to generate KDR+ EC progenitors. Magnetic purification of a KDR+ progenitor subpopulation resulted in an expanding,homogeneous pool of ECs that expressed EC markers and had functional properties of ECs. Comparison of the transcriptomes revealed limited gene expression variability between multiple lines of human iPS-derived ECs or between lines of ES- and iPS-derived ECs. These results demonstrate a method to generate large numbers of pure human EC progenitors and differentiated ECs from pluripotent stem cells and suggest individual lineages derived from human iPS cells may have significantly less variance than their pluripotent founders. STEM Cells2013;31:92–103
View Publication