Carter DA et al. (SEP 2016)
Scientific reports 6 33792
Mislocalisation of BEST1 in iPSC-derived retinal pigment epithelial cells from a family with autosomal dominant vitreoretinochoroidopathy (ADVIRC).
Autosomal dominant vitreoretinochoroidopathy (ADVIRC) is a rare,early-onset retinal dystrophy characterised by distinct bands of circumferential pigmentary degeneration in the peripheral retina and developmental eye defects. ADVIRC is caused by mutations in the Bestrophin1 (BEST1) gene,which encodes a transmembrane protein thought to function as an ion channel in the basolateral membrane of retinal pigment epithelial (RPE) cells. Previous studies suggest that the distinct ADVIRC phenotype results from alternative splicing of BEST1 pre-mRNA. Here,we have used induced pluripotent stem cell (iPSC) technology to investigate the effects of an ADVIRC associated BEST1 mutation (c.704T textgreater C,p.V235A) in patient-derived iPSC-RPE. We found no evidence of alternate splicing of the BEST1 transcript in ADVIRC iPSC-RPE,however in patient-derived iPSC-RPE,BEST1 was expressed at the basolateral membrane and the apical membrane. During human eye development we show that BEST1 is expressed more abundantly in peripheral RPE compared to central RPE and is also expressed in cells of the developing retina. These results suggest that higher levels of mislocalised BEST1 expression in the periphery,from an early developmental stage,could provide a mechanism that leads to the distinct clinical phenotype observed in ADVIRC patients.
View Publication
Zhang X et al. ( 2016)
1353 323--342
Mitochondrial Disease-Specific Induced Pluripotent Stem Cell Models: Generation and Characterization.
Mitochondrial disease is a group of disorders caused by dysfunctional mitochondria,of which the mutation in the mitochondrial DNA is one of the primary factors. However,the molecular pathogenesis of mitochondrial diseases remains poorly understood due to lack of cell models. Patient-specific induced pluripotent stem cells (iPS cells or iPSCs) are originated from individuals suffering different diseases but carrying unchanged disease causing gene. Therefore,patient-specific iPS cells can be used as excellent cell models to elucidate the mechanisms underlying mitochondrial diseases. Here we present a detailed protocol for generating iPS cells from urine cells and fibroblasts for instance,as well as a series of characterizations.
View Publication
Dai D-F et al. ( 2017)
Stem cells international 2017 5153625
Mitochondrial Maturation in Human Pluripotent Stem Cell Derived Cardiomyocytes.
Human pluripotent stem cells derived cardiomyocytes (PSC-CMs) have been widely used for disease modeling,drug safety screening,and preclinical cell therapy to regenerate myocardium. Most studies have utilized PSC-CM grown in vitro for a relatively short period after differentiation. These PSC-CMs demonstrated structural,electrophysiological,and mechanical features of primitive cardiomyocytes. A few studies have extended in vitro PSC-CM culture time and reported improved maturation of structural and electromechanical properties. The degree of mitochondrial maturation,however,remains unclear. This study characterized the development of mitochondria during prolonged in vitro culture. PSC-CM demonstrated an improved mitochondrial maturation with prolonged culture,in terms of increased mitochondrial relative abundance,enhanced membrane potential,and increased activity of several mitochondrial respiratory complexes. These are in parallel with the maturation of other cellular components. However,the maturation of mitochondria in PSC-CMs grown for extended in vitro culture exhibits suboptimal maturation when compared with the maturation of mitochondria observed in the human fetal heart during similar time interval.
View Publication
Bao F-XX et al. (APR 2016)
CNS neuroscience & therapeutics 22 8 648--660
Mitochondrial Membrane Potential-dependent Endoplasmic Reticulum Fragmentation is an Important Step in Neuritic Degeneration.
BACKGROUND Neuritic degeneration is an important early pathological step in neurodegeneration. AIM The purpose of this study was to explore the mechanisms connecting neuritic degeneration to the functional and morphological remodeling of endoplasmic reticulum (ER) and mitochondria. METHODS Here,we set up neuritic degeneration models by neurite cutting-induced neural degeneration in human-induced pluripotent stem cell-derived neurons. RESULTS We found that neuritic ER becomes fragmented and forms complexes with mitochondria,which induces IP3R-dependent mitochondrial Ca(2+) elevation and dysfunction during neuritic degeneration. Furthermore,mitochondrial membrane potential is required for ER fragmentation and mitochondrial Ca(2+) elevation during neuritic degeneration. Mechanically,tightening of the ER-mitochondria associations by expression of a short synthetic linker" and ER Ca(2+) releasing together could promote mitochondrial Ca(2+) elevation�
View Publication
Liu W et al. (FEB 2013)
Biochemical and Biophysical Research Communications 431 4 767--771
Mitochondrial metabolism transition cooperates with nuclear reprogramming during induced pluripotent stem cell generation
Induced pluripotent stem cells (iPSCs) hold great clinical potential for regenerative medicine. Much work has been done to investigate the mechanisms of their generation,focusing on the cell nucleus. However,the roles of specific organelles and in particular mitochondria in the potential mechanisms of nuclear reprogramming remain unclear. In this study,we sought to determine the role of mitochondrial metabolism transition in nuclear reprogramming. We found that the mitochondrial cristae had remodeled in iPSCs. The efficiency of iPSC generation was significantly reduced by down-regulation of mitochondrial inner membrane protein (IMMT),which regulates the morphology of mitochondrial cristae. Moreover,cells with the oxidative phosphorylation (OXPHOS) advantage had higher reprogramming efficiency than normal cells and the glycolysis intermediate lactic acid enhanced the efficiency of iPSCs generation. Our results show that the remodeling of mitochondrial cristae couples with the generation of iPSCs,suggesting mitochondrial metabolism transition plays an important role in nuclear reprogramming.
View Publication
Seibler P et al. (APR 2011)
The Journal of neuroscience : the official journal of the Society for Neuroscience 31 16 5970--6
Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells.
Genetic Parkinson disease (PD) has been associated with mutations in PINK1,a gene encoding a mitochondrial kinase implicated in the regulation of mitochondrial degradation. While the studies so far examined PINK1 function in non-neuronal systems or through PINK1 knockdown approaches,there is an imperative to examine the role of endogenous PINK1 in appropriate human-derived and biologically relevant cell models. Here we report the generation of induced pluripotent stem (iPS) cells from skin fibroblasts taken from three PD patients with nonsense (c.1366CtextgreaterT; p.Q456X) or missense (c.509TtextgreaterG; p.V170G) mutations in the PINK1 gene. These cells were differentiated into dopaminergic neurons that upon mitochondrial depolarization showed impaired recruitment of lentivirally expressed Parkin to mitochondria,increased mitochondrial copy number,and upregulation of PGC-1α,an important regulator of mitochondrial biogenesis. Importantly,these alterations were corrected by lentiviral expression of wild-type PINK1 in mutant iPS cell-derived PINK1 neurons. In conclusion,our studies suggest that fibroblasts from genetic PD can be reprogrammed and differentiated into neurons. These neurons exhibit distinct phenotypes that should be amenable to further mechanistic studies in this relevant biological context.
View Publication
Kang E et al. ( 2016)
Nature 540 7632 270--275
Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations.
Maternally inherited mitochondrial (mt)DNA mutations can cause fatal or severely debilitating syndromes in children,with disease severity dependent on the specific gene mutation and the ratio of mutant to wild-type mtDNA (heteroplasmy) in each cell and tissue. Pathogenic mtDNA mutations are relatively common,with an estimated 778 affected children born each year in the United States. Mitochondrial replacement therapies or techniques (MRT) circumventing mother-to-child mtDNA disease transmission involve replacement of oocyte maternal mtDNA. Here we report MRT outcomes in several families with common mtDNA syndromes. The mother's oocytes were of normal quality and mutation levels correlated with those in existing children. Efficient replacement of oocyte mutant mtDNA was performed by spindle transfer,resulting in embryos containing<99% donor mtDNA. Donor mtDNA was stably maintained in embryonic stem cells (ES cells) derived from most embryos. However,some ES cell lines demonstrated gradual loss of donor mtDNA and reversal to the maternal haplotype. In evaluating donor-to-maternal mtDNA interactions,it seems that compatibility relates to mtDNA replication efficiency rather than to mismatch or oxidative phosphorylation dysfunction. We identify a polymorphism within the conserved sequence box II region of the D-loop as a plausible cause of preferential replication of specific mtDNA haplotypes. In addition,some haplotypes confer proliferative and growth advantages to cells. Hence,we propose a matching paradigm for selecting compatible donor mtDNA for MRT.
View Publication
Yokota M et al. (JAN 2017)
Cell death & disease 8 1 e2551
Mitochondrial respiratory dysfunction disturbs neuronal and cardiac lineage commitment of human iPSCs.
Mitochondrial diseases are genetically heterogeneous and present a broad clinical spectrum among patients; in most cases,genetic determinants of mitochondrial diseases are heteroplasmic mitochondrial DNA (mtDNA) mutations. However,it is uncertain whether and how heteroplasmic mtDNA mutations affect particular cellular fate-determination processes,which are closely associated with the cell-type-specific pathophysiology of mitochondrial diseases. In this study,we established two isogenic induced pluripotent stem cell (iPSC) lines each carrying different proportions of a heteroplasmic m.3243A>G mutation from the same patient; one exhibited apparently normal and the other showed most likely impaired mitochondrial respiratory function. Low proportions of m.3243A>G exhibited no apparent molecular pathogenic influence on directed differentiation into neurons and cardiomyocytes,whereas high proportions of m.3243A>G showed both induced neuronal cell death and inhibited cardiac lineage commitment. Such neuronal and cardiac maturation defects were also confirmed using another patient-derived iPSC line carrying quite high proportion of m.3243A>G. In conclusion,mitochondrial respiratory dysfunction strongly inhibits maturation and survival of iPSC-derived neurons and cardiomyocytes; our presenting data also suggest that appropriate mitochondrial maturation actually contributes to cellular fate-determination processes during development.
View Publication
MMP-9 and MMP-2 Contribute to Neuronal Cell Death in iPSC Models of Frontotemporal Dementia with MAPT Mutations.
How mutations in the microtubule-associated protein tau (MAPT) gene cause frontotemporal dementia (FTD) remains poorly understood. We generated and characterized multiple induced pluripotent stem cell (iPSC) lines from patients with MAPT IVS10+16 and tau-A152T mutations and a control subject. In cortical neurons differentiated from these and other published iPSC lines,we found that MAPT mutations do not affect neuronal differentiation but increase the 4R/3R tau ratio. Patient neurons had significantly higher levels of MMP-9 and MMP-2 and were more sensitive to stress-induced cell death. Inhibitors of MMP-9/MMP-2 protected patient neurons from stress-induced cell death and recombinant MMP-9/MMP-2 were sufficient to decrease neuronal survival. In tau-A152T neurons,inhibition of the ERK pathway decreased MMP-9 expression. Moreover,ectopic expression of 4R but not 3R tau-A152T in HEK293 cells increased MMP-9 expression and ERK phosphorylation. These findings provide insights into the molecular pathogenesis of FTD and suggest a potential therapeutic target for FTD with MAPT mutations.
View Publication
Li W et al. (JAN 2012)
Human Molecular Genetics 21 1 32--45
Modeling abnormal early development with induced pluripotent stem cells from aneuploid syndromes
Many human diseases share a developmental origin that manifests during childhood or maturity. Aneuploid syndromes are caused by supernumerary or reduced number of chromosomes and represent an extreme example of developmental disease,as they have devastating consequences before and after birth. Investigating how alterations in gene dosage drive these conditions is relevant because it might help treat some clinical aspects. It may also provide explanations as to how quantitative differences in gene expression determine phenotypic diversity and disease susceptibility among natural populations. Here,we aimed to produce induced pluripotent stem cell (iPSC) lines that can be used to improve our understanding of aneuploid syndromes. We have generated iPSCs from monosomy X [Turner syndrome (TS)],trisomy 8 (Warkany syndrome 2),trisomy 13 (Patau syndrome) and partial trisomy 11;22 (Emanuel syndrome),using either skin fibroblasts from affected individuals or amniocytes from antenatal diagnostic tests. These cell lines stably maintain the karyotype of the donors and behave like embryonic stem cells in all tested assays. TS iPSCs were used for further studies including global gene expression analysis and tissue-specific directed differentiation. Multiple clones displayed lower levels of the pseudoautosomal genes ASMTL and PPP2R3B than the controls. Moreover,they could be transformed into neural-like,hepatocyte-like and heart-like cells,but displayed insufficient up-regulation of the pseudoautosomal placental gene CSF2RA during embryoid body formation. These data support that abnormal organogenesis and early lethality in TS are not caused by a tissue-specific differentiation blockade,but rather involves other abnormalities including impaired placentation.
View Publication
Modeling anorexia nervosa: transcriptional insights from human iPSC-derived neurons.
Anorexia nervosa (AN) is a complex and multifactorial disorder occurring predominantly in women. Despite having the highest mortality among psychiatric conditions,it still lacks robust and effective treatment. Disorders such as AN are most likely syndromes with multiple genetic contributions,however,genome-wide studies have been underpowered to reveal associations with this uncommon illness. Here,we generated induced pluripotent stem cells (iPSCs) from adolescent females with AN and unaffected controls. These iPSCs were differentiated into neural cultures and subjected to extensive transcriptome analysis. Within a small cohort of patients who presented for treatment,we identified a novel gene that appears to contribute to AN pathophysiology,TACR1 (tachykinin 1 receptor). The participation of tachykinins in a variety of biological processes and their interactions with other neurotransmitters suggest novel mechanisms for how a disrupted tachykinin system might contribute to AN symptoms. Although TACR1 has been associated with psychiatric conditions,especially anxiety disorders,we believe this report is its first association with AN. Moreover,our human iPSC approach is a proof-of-concept that AN can be modeled in vitro with a full human genetic complement,and represents a new tool for understanding the elusive molecular and cellular mechanisms underlying the disease.
View Publication
Chen J et al. ( 2016)
Stem cell research & therapy 7 1 2
Modeling autosomal dominant optic atrophy using induced pluripotent stem cells and identifying potential therapeutic targets.
BACKGROUND: Many retinal degenerative diseases are caused by the loss of retinal ganglion cells (RGCs). Autosomal dominant optic atrophy is the most common hereditary optic atrophy disease and is characterized by central vision loss and degeneration of RGCs. Currently,there is no effective treatment for this group of diseases. However,stem cell therapy holds great potential for replacing lost RGCs of patients. Compared with embryonic stem cells,induced pluripotent stem cells (iPSCs) can be derived from adult somatic cells,and they are associated with fewer ethical concerns and are less prone to immune rejection. In addition,patient-derived iPSCs may provide us with a cellular model for studying the pathogenesis and potential therapeutic agents for optic atrophy.backslashnbackslashnMETHODS: In this study,iPSCs were obtained from patients carrying an OPA1 mutation (OPA1 (+/-) -iPSC) that were diagnosed with optic atrophy. These iPSCs were differentiated into putative RGCs,which were subsequently characterized by using RGC-specific expression markers BRN3a and ISLET-1.backslashnbackslashnRESULTS: Mutant OPA1 (+/-) -iPSCs exhibited significantly more apoptosis and were unable to efficiently differentiate into RGCs. However,with the addition of neural induction medium,Noggin,or estrogen,OPA1 (+/-) -iPSC differentiation into RGCs was promoted.backslashnbackslashnCONCLUSIONS: Our results suggest that apoptosis mediated by OPA1 mutations plays an important role in the pathogenesis of optic atrophy,and both noggin and β-estrogen may represent potential therapeutic agents for OPA1-related optic atrophy.
View Publication