Comparative analysis of the frequency and distribution of stem and progenitor cells in the adult mouse brain.
The neurosphere assay can detect and expand neural stem cells (NSCs) and progenitor cells,but it cannot discriminate between these two populations. Given two assays have purported to overcome this shortfall,we performed a comparative analysis of the distribution and frequency of NSCs and progenitor cells detected in 400 mum coronal segments along the ventricular neuraxis of the adult mouse brain using the neurosphere assay,the neural colony forming cell assay (N-CFCA),and label-retaining cell (LRC) approach. We observed a large variation in the number of progenitor/stem cells detected in serial sections along the neuraxis,with the number of neurosphere-forming cells detected in individual 400 mum sections varying from a minimum of eight to a maximum of 891 depending upon the rostral-caudal coordinate assayed. Moreover,the greatest variability occurred in the rostral portion of the lateral ventricles,thereby explaining the large variation in neurosphere frequency previously reported. Whereas the overall number of neurospheres (3730 +/- 276) or colonies (4275 +/- 124) we detected along the neuraxis did not differ significantly,LRC numbers were significantly reduced (1186 +/- 188,7 month chase) in comparison to both total colonies and neurospheres. Moreover,approximately two orders of magnitude fewer NSC-derived colonies (50 +/- 10) were detected using the N-CFCA as compared to LRCs. Given only 5% of the LRCs are cycling (BrdU+/Ki-67+) or competent to divide (BrdU+/Mcm-2+),and proliferate upon transfer to culture,it is unclear whether this technique selectively detects endogenous NSCs. Overall,caution should be taken with the interpretation and employment of all these techniques.
View Publication
Pluchino S et al. (OCT 2008)
Brain : a journal of neurology 131 Pt 10 2564--78
Persistent inflammation alters the function of the endogenous brain stem cell compartment.
Endogenous neural stem/precursor cells (NPCs) are considered a functional reservoir for promoting tissue homeostasis and repair after injury,therefore regenerative strategies that mobilize these cells have recently been proposed. Despite evidence of increased neurogenesis upon acute inflammatory insults (e.g. ischaemic stroke),the plasticity of the endogenous brain stem cell compartment in chronic CNS inflammatory disorders remains poorly characterized. Here we show that persistent brain inflammation,induced by immune cells targeting myelin,extensively alters the proliferative and migratory properties of subventricular zone (SVZ)-resident NPCs in vivo leading to significant accumulation of non-migratory neuroblasts within the SVZ germinal niche. In parallel,we demonstrate a quantitative reduction of the putative brain stem cells proliferation in the SVZ during persistent brain inflammation,which is completely reversed after in vitro culture of the isolated NPCs. Together,these data indicate that the inflamed brain microenvironment sustains a non cell-autonomous dysfunction of the endogenous CNS stem cell compartment and challenge the potential efficacy of proposed therapies aimed at mobilizing endogenous precursors in chronic inflammatory brain disorders.
View Publication
Yanpallewar SU et al. (JAN 2010)
The Journal of neuroscience : the official journal of the Society for Neuroscience 30 3 1096--109
Alpha2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment.
Slow-onset adaptive changes that arise from sustained antidepressant treatment,such as enhanced adult hippocampal neurogenesis and increased trophic factor expression,play a key role in the behavioral effects of antidepressants. alpha(2)-Adrenoceptors contribute to the modulation of mood and are potential targets for the development of faster acting antidepressants. We investigated the influence of alpha(2)-adrenoceptors on adult hippocampal neurogenesis. Our results indicate that alpha(2)-adrenoceptor agonists,clonidine and guanabenz,decrease adult hippocampal neurogenesis through a selective effect on the proliferation,but not the survival or differentiation,of progenitors. These effects persist in dopamine beta-hydroxylase knock-out (Dbh(-/-)) mice lacking norepinephrine,supporting a role for alpha(2)-heteroceptors on progenitor cells,rather than alpha(2)-autoreceptors on noradrenergic neurons that inhibit norepinephrine release. Adult hippocampal progenitors in vitro express all the alpha(2)-adrenoceptor subtypes,and decreased neurosphere frequency and BrdU incorporation indicate direct effects of alpha(2)-adrenoceptor stimulation on progenitors. Furthermore,coadministration of the alpha(2)-adrenoceptor antagonist yohimbine with the antidepressant imipramine significantly accelerates effects on hippocampal progenitor proliferation,the morphological maturation of newborn neurons,and the increase in expression of brain derived neurotrophic factor and vascular endothelial growth factor implicated in the neurogenic and behavioral effects of antidepressants. Finally,short-duration (7 d) yohimbine and imipramine treatment results in robust behavioral responses in the novelty suppressed feeding test,which normally requires 3 weeks of treatment with classical antidepressants. Our results demonstrate that alpha(2)-adrenoceptors,expressed by progenitor cells,decrease adult hippocampal neurogenesis,while their blockade speeds up antidepressant action,highlighting their importance as targets for faster acting antidepressants.
View Publication
Wang Y et al. (MAY 2010)
Neuroscience 167 3 750--7
Erythropoietin (EPO) regulates the proliferation and differentiation of erythroid cells by binding to its specific transmembrane receptor (EPOR). The presence of EPO and its receptor in the CNS suggests a different function for EPO other than erythropoiesis. The purpose of the present study was to examine EPOR expression and the role of EPO in the proliferation of neonatal spinal cord-derived neural progenitor cells. The effect of EPO on cell cycle progression was also examined,as well as the signaling cascades involved in this process. Our results showed that EPOR was present in the neural progenitor cells and EPO significantly enhanced their proliferation. Cell cycle analysis of EPO-treated neural progenitor cells indicated a reduced percentage of cells in G0/G1 phase,whereas the cell proliferation index (S phase plus G2/M phase) was increased. EPO also increased the proportion of 5-bromo-2-deoxyuridine (BrdU)-positive cells. With respect to the cell cycle signaling,we examined the cyclin-dependent kinases D1,D2 and E,and cyclin-dependent kinase inhibitors,p21cip1,p27kip1 and p57kip2. No significant differences were observed in the expression of these transcripts after EPO administration. Interestingly,the anti-apoptotic factors,mcl-1 and bcl-2 were significantly increased twofold. Moreover,these specific effects of EPO were eliminated by incubation of the progenitor cells with anti-EPO neutralizing antibody. Those observations suggested that EPO may play a role in normal spinal cord development by regulating cell proliferation and apoptosis.
View Publication
Jeerage KM et al. (OCT 2012)
Neurotoxicology 33 5 1170--9
Neurite outgrowth and differentiation of rat cortex progenitor cells are sensitive to lithium chloride at non-cytotoxic exposures.
Neuron-specific in vitro screening strategies have the potential to accelerate the evaluation of chemicals for neurotoxicity. We examined neurite outgrowth as a measure of neuronal response with a commercially available rat cortex progenitor cell model,where cells were exposed to a chemical during a period of cell differentiation. In control cultures,the fraction of beta-III-tubulin positive neurons and their neurite length increased significantly with time,indicating differentiation of the progenitor cells. Expression of glial fibrillary acidic protein,an astrocyte marker,also increased significantly with time. By seeding progenitor cells at varying densities,we demonstrated that neurite length was influenced by cell-cell spacing. After ten days,cultures seeded at densities of 1000 cells/mm(2) or lower had significantly shorter neurites than cultures seeded at densities of 1250 cells/mm(2) or higher. Progenitor cells were exposed to lithium,a neuroactive chemical with diverse modes of action. Cultures exposed to 30 mmol/L or 10 mmol/L lithium chloride (LiCl) had significantly lower metabolic activity than control cultures,as reported by adenosine triphosphate content,and no neurons were observed after ten days of exposure. Cultures exposed to 3 mmol/L,1 mmol/L,or 0.3 mmol/L LiCl,which encompass lithium's therapeutic range,had metabolic activity similar to control cultures. These cultures exhibited concentration-dependent decreases in neurite outgrowth after ten days of LiCl exposure. Neurite outgrowth results were relatively robust,regardless of the evaluation methodology. This work demonstrates that measurement of neurite outgrowth in differentiating progenitor cell cultures can be a sensitive endpoint for neuronal response under non-cytotoxic exposure conditions.
View Publication
Goustard-Langelier B et al. (JAN 2013)
The Journal of nutritional biochemistry 24 1 380--7
Rat neural stem cell proliferation and differentiation are durably altered by the in utero polyunsaturated fatty acid supply.
We isolated neural stem cells/neural progenitors (NSC) from 1-day-old rat pups born to mothers fed diets that were deficient or supplemented with n-3 polyunsaturated fatty acids (PUFAs) and compared their proliferation and differentiation in vitro. The cells isolated from the n-3PUFA-deficient pups consistently proliferated more slowly than cells that were isolated from n-3PUFA-supplemented pups,despite the fact that both were cultured under the same conditions. The differences in the proliferation rates were evaluated up until 40 days of culture and were highly significant. When the cells were allowed to differentiate,the deficient cells exhibited a higher degree of neuronal maturation in response to the addition of PUFAs in the medium,as demonstrated by an increase in neurite length,whereas the neurons derived from the supplemented pups showed no change. This result was consistent,regardless of the age of the culture. The properties of the NSC were durably modified throughout the length of the culture,although the membrane phospholipid compositions were similar. We examined the differential expression of selected mRNAs and micro RNAs. We found significant differences in the gene expression of proliferating and differentiating cells,and a group of genes involved in neurogenesis was specifically modified by n-3 PUFA treatment. We conclude that n-3 PUFA levels in the maternal diet can induce persistent modifications of the proliferation and differentiation of NSCs and of their transcriptome. Therefore,the n-3 supply received in utero may condition on a long-term basis cell renewal in the brain.
View Publication
Ito N et al. (APR 2016)
Disease models & mechanisms 9 4 451--462
Decreased N-TAF1 expression in X-linked dystonia-parkinsonism patient-specific neural stem cells.
X-linked dystonia-parkinsonism (XDP) is a hereditary neurodegenerative disorder involving a progressive loss of striatal medium spiny neurons. The mechanisms underlying neurodegeneration are not known,in part because there have been few cellular models available for studying the disease. The XDP haplotype consists of multiple sequence variations in a region of the X chromosome containingTAF1,a large gene with at least 38 exons,and a multiple transcript system (MTS) composed of five unconventional exons. A previous study identified an XDP-specific insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon in intron 32 ofTAF1,as well as a neural-specific TAF1 isoform,N-TAF1,which showed decreased expression in post-mortem XDP brain compared with control tissue. Here,we generated XDP patient and control fibroblasts and induced pluripotent stem cells (iPSCs) in order to further probe cellular defects associated with this disease. As initial validation of the model,we compared expression ofTAF1and MTS transcripts in XDP versus control fibroblasts and iPSC-derived neural stem cells (NSCs). Compared with control cells,XDP fibroblasts exhibited decreased expression ofTAF1transcript fragments derived from exons 32-36,a region spanning the SVA insertion site. N-TAF1,which incorporates an alternative exon (exon 34'),was not expressed in fibroblasts,but was detectable in iPSC-differentiated NSCs at levels that were ∼threefold lower in XDP cells than in controls. These results support the previous findings that N-TAF1 expression is impaired in XDP,but additionally indicate that this aberrant transcription might occur in neural cells at relatively early stages of development that precede neurodegeneration.
View Publication
Dotti CG et al. (OCT 1987)
Neuroscience 23 1 121--30
The expression and distribution of the microtubule-associated proteins tau and microtubule-associated protein 2 in hippocampal neurons in the rat in situ and in cell culture.
Using a monoclonal antibody against the microtubule-associated protein tau we compared the distribution and the biochemical maturation of this protein in hippocampal pyramidal neurons in the rat in tau and in culture. In tissue sections from mature animals tau was localized heterogeneously within neurons. It was concentrated in axons; dendrites and somata showed little or no staining. In hippocampal cultures ranging from 12 h to 4 weeks in vitro tau was present in neurons but not in glial cells,as it is in situ. Within cultured neurons,however,tau was not compartmentalized but was present throughout the dendrites,axons and somata. Immunoblotting experiments showed that the biochemical maturation of tau that occurs in situ also failed to occur in culture. The young form of tau persisted,and the adult forms did not develop. In contrast the biochemical maturation and the compartmentalization of microtubule-associated protein 2 occurred normally in hippocampal cultures. These results show that the biochemical maturation and the intraneuronal compartmentalization of these two microtubule-associated proteins are independently controlled. Despite the non-restricted distribution of tau in hippocampal neurons in culture,and despite the presence of only the immature isoform which has a lessened stimulatory effect on microtubule polymerization,axons and dendrites appear to grow normally and to exhibit appropriate functional properties.
View Publication
Cá et al. (MAR 1986)
The Journal of neuroscience : the official journal of the Society for Neuroscience 6 3 714--22
Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture.
In dissociated-cell cultures prepared from the embryonic rat hippocampus,neurons establish both axons and dendrites,which differ in geometry,in ultrastructure,and in synaptic polarity. We have used immunocytochemistry with monoclonal antibodies to study the regional distribution of beta-tubulin and micro-tubule-associated protein 2 (MAP2) in hippocampal cultures and their localization during early stages of axonal and dendritic development. After development for a week or more in culture,when axons and dendrites were well-differentiated,the distribution of these two proteins was quite different. Beta-tubulin was present throughout the nerve cell,in soma,dendrites,and axon. It was also present in all classes of non-neuronal cells,astrocytes,fibroblasts,and a presumptive glial progenitor cell. In contrast,MAP2 was preferentially localized to nerve cells; within neurons,MAP2 was present in soma and dendrites,but little or no immunostaining was detectable in axons. Both beta-tubulin and MAP2 were present in nerve cells at the time of plating. From the earliest stages of process extension,beta-tubulin was present in all neuronal processes,both axons and dendrites. Surprisingly,MAP2 was also initially present in both axons and dendrites,extending as far as the axonal growth cone. With subsequent development,MAP2 staining was selectively lost from the axon so that after 1 week in vitro little or no axonal staining remained. Taken together with earlier results (Cáceres et al.,1984a),these data indicate that the establishment of neuronal polarity,as manifested by the molecular differentiation of the axonal and dendritic cytoskeleton,occurs largely under endogenous control,even under culture conditions in which cell interactions are greatly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)
View Publication
Binder LI et al. (SEP 1984)
Proceedings of the National Academy of Sciences of the United States of America 81 17 5613--7
Heterogeneity of microtubule-associated protein 2 during rat brain development.
The electrophoretic pattern of the large microtubule-associated protein,MAP2,changes during rat brain development. Immunoblots of NaDodSO4 extracts obtained from the cerebral cortex,cerebellum,and thalamus at 10-15 days after birth reveal only a single electrophoretic species when probed with any of three MAP2 monoclonal antibodies. By contrast,adult MAP2 contains two immunoreactive species,MAP2a and MAP2b. The single band of MAP2 from immature brain electrophoretically comigrates with adult MAP2b. Between postnatal days 17 and 18,immature MAP2 simultaneously resolves into two species in both the cerebellum and cerebral cortex. Immunoblots of NaDodSO4 extracts from spinal cord demonstrate the adult complement of MAP2 by day 10,indicating that MAP2 does not change coordinately throughout the entire central nervous system. In vitro cAMP-dependent phosphorylation of immature MAP2 causes a band split reminiscent of that seen during brain development in vivo. The possibility that the developmentally regulated changes observed in MAP2 during brain maturation are due to timed phosphorylation events is discussed.
View Publication
Bain G et al. (APR 1995)
Developmental biology 168 2 342--57
Embryonic stem cells express neuronal properties in vitro.
Mouse embryonic stem (ES) cells cultured as aggregates and exposed to retinoic acid are induced to express multiple phenotypes normally associated with neurons. A large percentage of treated aggregates produce a rich neuritic outgrowth. Dissociating the induced aggregates with trypsin and plating the cells as a monolayer results in cultures in which a sizable percentage of the cells have a neuronal appearance. These neuron-like cells express class III beta-tubulin and the neurofilament M subunit. Induced cultures express transcripts for neural-associated genes including the neurofilament L subunit,glutamate receptor subunits,the transcription factor Brn-3,and GFAP. Levels of neurofilament L and GAD67 and GAD65 transcripts rise dramatically upon induction. Physiological studies show that the neuron-like cells generate action potentials and express TTX-sensitive sodium channels,as well as voltage-gated potassium channels and calcium channels. We conclude that a complex system of neuronal gene expression can be activated in cultured ES cells. This system should be favorable for investigating some of the mechanisms that regulate neuronal differentiation.
View Publication
Okabe S et al. (SEP 1996)
Mechanisms of development 59 1 89--102
Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro.
To understand the mechanism of the sequential restriction of multipotency of stem cells during development,we have established culture conditions that allow the differentiation of neuroepithelial precursor cells from embryonic stem (ES) cells. A highly enriched population of neuroepithelial precursor cells derived from ES cells proliferates in the presence of basic fibroblast growth factor (bFGF). These cells differentiate into both neurons and glia following withdrawal of bFGF. By further differentiating the cells in serum-containing medium,the neurons express a wide variety of neuron-specific genes and generate both excitatory and inhibitory synaptic connections. The expression pattern of position-specific neural markers suggests the presence of a variety of central nervous system (CNS) neuronal cell types. These findings indicate that neuronal precursor cells can be isolated from ES cells and that these cells can efficiently differentiate into functional post-mitotic neurons of diverse CNS structures.
View Publication