技术资料
-
文献M. D. Perry et al. (sep 2019) Cardiovascular researchPharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization.
AIMS Current treatment for congenital long QT syndrome Type 2 (cLQTS2),an electrical disorder that increases the risk of life-threatening cardiac arrhythmias,is aimed at reducing the incidence of arrhythmia triggers (beta-blockers) or terminating the arrhythmia after onset (implantable cardioverter-defibrillator). An alternative strategy is to target the underlying disease mechanism,which is reduced rapid delayed rectifier current (IKr) passed by Kv11.1 channels. Small molecule activators of Kv11.1 have been identified but the extent to which these can restore normal cardiac signalling in cLQTS2 backgrounds remains unclear. Here,we examined the ability of ICA-105574,an activator of Kv11.1 that impairs transition to the inactivated state,to restore function to heterozygous Kv11.1 channels containing either inactivation enhanced (T618S,N633S) or expression deficient (A422T) mutations. METHODS AND RESULTS ICA-105574 effectively restored Kv11.1 current from heterozygous inactivation enhanced or expression defective mutant channels in heterologous expression systems. In a human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model of cLQTS2 containing the expression defective Kv11.1 mutant A422T,cardiac repolarization,estimated from the duration of calcium transients in isolated cells and the rate corrected field potential duration (FPDc) in culture monolayers of cells,was significantly prolonged. The Kv11.1 activator ICA-105574 was able to reverse the prolonged repolarization in a concentration-dependent manner. However,at higher doses,ICA-105574 produced a shortening of the FPDc compared to controls. In vitro and in silico analysis suggests that this overcorrection occurs as a result of a temporal redistribution of the peak IKr to much earlier in the plateau phase of the action potential,which results in early repolarization. CONCLUSION Kv11.1 activators,which target the primary disease mechanism,provide a possible treatment option for cLQTS2,with the caveat that there may be a risk of overcorrection that could itself be pro-arrhythmic. View Publication -
文献M. R. Hildebrandt et al. (dec 2019) Stem cell reports 13 6 1126--1141Precision Health Resource of Control iPSC Lines for Versatile Multilineage Differentiation.
Induced pluripotent stem cells (iPSC) derived from healthy individuals are important controls for disease-modeling studies. Here we apply precision health to create a high-quality resource of control iPSCs. Footprint-free lines were reprogrammed from four volunteers of the Personal Genome Project Canada (PGPC). Multilineage-directed differentiation efficiently produced functional cortical neurons,cardiomyocytes and hepatocytes. Pilot users demonstrated versatility by generating kidney organoids,T lymphocytes,and sensory neurons. A frameshift knockout was introduced into MYBPC3 and these cardiomyocytes exhibited the expected hypertrophic phenotype. Whole-genome sequencing-based annotation of PGPC lines revealed on average 20 coding variants. Importantly,nearly all annotated PGPC and HipSci lines harbored at least one pre-existing or acquired variant with cardiac,neurological,or other disease associations. Overall,PGPC lines were efficiently differentiated by multiple users into cells from six tissues for disease modeling,and variant-preferred healthy control lines were identified for specific disease settings. View Publication -
文献S. Ross et al. (may 2019) Stem cell research 37 101450Characterization of the first induced pluripotent stem cell line generated from a patient with autosomal dominant catecholaminergic polymorphic ventricular tachycardia due to a heterozygous mutation in cardiac calsequestrin-2.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmia syndrome characterized by adrenaline induced ventricular tachycardia. The primary genetic aetiologies underlying CPVT are either autosomal dominant or autosomal recessive inheritance,resulting from heterozygous mutations in cardiac ryanodine receptor (RYR2) and homozygous mutations in cardiac calsequestrin-2 (CASQ2),respectively. Recently,a large family with autosomal dominant CPVT due to a heterozygous mutation in CASQ2,p.Lys180Arg,was reported. This resource is the first induced pluripotent stem cell line generated from a patient with autosomal dominant CPVT due to a heterozygous mutation in CASQ2. Induced pluripotent stem cells were generated from the whole blood of a 40-year-old woman with severe CPVT who is heterozygous for the p.Lys180Arg CASQ2 mutation. Induced pluripotent stem cell (iPSC) characterization confirmed expression of pluripotency makers,trilineage differentiation potential,and the absence of exogenous pluripotency vector expression. View Publication -
文献M. Holliday et al. ( 2018) Stem cell research 33 269--273Development of induced pluripotent stem cells from a patient with hypertrophic cardiomyopathy who carries the pathogenic myosin heavy chain 7 mutation p.Arg403Gln.
Hypertrophic cardiomyopathy (HCM) is an inherited cardiomyopathy characterized by left ventricular hypertrophy ≥15 mm in the absence of loading conditions. HCM has a prevalence of up to one in 200,and can result in significant adverse outcomes including heart failure and sudden cardiac death. An induced pluripotent stem cell (iPSC) line was generated from peripheral blood mononuclear cells obtained from the whole blood of a 38-year-old female patient with HCM in which genetic testing identified the well-known pathogenic p.Arg403Gln mutation in myosin heavy chain 7. iPSCs express pluripotency markers,demonstrate trilineage differentiation capacity,and display a normal 46,XX female karyotype. This resource will allow further assessment of the pathophysiological development of HCM. View Publication -
文献Drowley L et al. (FEB 2016) Stem cells translational medicine 5 2 164--74Human Induced Pluripotent Stem Cell-Derived Cardiac Progenitor Cells in Phenotypic Screening: A Transforming Growth Factor-β Type 1 Receptor Kinase Inhibitor Induces Efficient Cardiac Differentiation.
Several progenitor cell populations have been reported to exist in hearts that play a role in cardiac turnover and/or repair. Despite the presence of cardiac stem and progenitor cells within the myocardium,functional repair of the heart after injury is inadequate. Identification of the signaling pathways involved in the expansion and differentiation of cardiac progenitor cells (CPCs) will broaden insight into the fundamental mechanisms playing a role in cardiac homeostasis and disease and might provide strategies for in vivo regenerative therapies. To understand and exploit cardiac ontogeny for drug discovery efforts,we developed an in vitro human induced pluripotent stem cell-derived CPC model system using a highly enriched population of KDR(pos)/CKIT(neg)/NKX2.5(pos) CPCs. Using this model system,these CPCs were capable of generating highly enriched cultures of cardiomyocytes under directed differentiation conditions. In order to facilitate the identification of pathways and targets involved in proliferation and differentiation of resident CPCs,we developed phenotypic screening assays. Screening paradigms for therapeutic applications require a robust,scalable,and consistent methodology. In the present study,we have demonstrated the suitability of these cells for medium to high-throughput screens to assess both proliferation and multilineage differentiation. Using this CPC model system and a small directed compound set,we identified activin-like kinase 5 (transforming growth factor-β type 1 receptor kinase) inhibitors as novel and potent inducers of human CPC differentiation to cardiomyocytes. Significance: Cardiac disease is a leading cause of morbidity and mortality,with no treatment available that can result in functional repair. This study demonstrates how differentiation of induced pluripotent stem cells can be used to identify and isolate cell populations of interest that can translate to the adult human heart. Two separate examples of phenotypic screens are discussed,demonstrating the value of this biologically relevant and reproducible technology. In addition,this assay system was able to identify novel and potent inducers of differentiation and proliferation of induced pluripotent stem cell-derived cardiac progenitor cells. View Publication
过滤器
筛选结果
细胞类型
- B 细胞 237 项目
- CD4+ 46 项目
- CD8+ 29 项目
- CHO细胞 19 项目
- HEK-293细胞(人胚肾293细胞) 2 项目
- HUVEC细胞(人脐静脉内皮细胞) 1 项目
- NK 细胞 175 项目
- PSC衍生 43 项目
- T 细胞 453 项目
- 上皮细胞 127 项目
- 中胚层 5 项目
- 乳腺细胞 102 项目
- 先天性淋巴细胞 41 项目
- 全血 8 项目
- 其他子集 1 项目
- 其他细胞系 9 项目
- 内皮细胞 13 项目
- 内皮集落形成细胞(ECFCs) 3 项目
- 内胚层 3 项目
- 前列腺细胞 19 项目
- 单个核细胞 92 项目
- 单核细胞 192 项目
- 多能干细胞 1986 项目
- 小胶质细胞 4 项目
- 巨噬细胞 43 项目
- 巨核细胞 10 项目
- 心肌细胞 20 项目
- 成骨细胞 9 项目
- 星形胶质细胞 6 项目
- 杂交瘤细胞 97 项目
- 树突状细胞(DCs) 132 项目
- 气道细胞 4 项目
- 淋巴细胞 84 项目
- 癌细胞及细胞系 146 项目
- 癌细胞和细胞系 1 项目
- 白细胞 17 项目
- 白细胞单采样本 12 项目
- 白血病/淋巴瘤细胞 14 项目
- 监管 1 项目
- 真皮细胞 2 项目
- 神经元 2 项目
- 神经干/祖细胞 472 项目
- 神经细胞 16 项目
- 粒细胞及其亚群 106 项目
- 红系细胞 12 项目
- 红细胞 12 项目
- 肌源干/祖细胞 10 项目
- 肝细胞 35 项目
- 肠道细胞 90 项目
- 肾细胞 4 项目
- 肿瘤细胞 26 项目
- 胰腺细胞 16 项目
- 脂肪细胞 6 项目
- 脑肿瘤干细胞 101 项目
- 血小板 4 项目
- 血浆 3 项目
- 血管生成细胞 4 项目
- 调节性细胞 11 项目
- 软骨细胞 8 项目
- 造血干/祖细胞 982 项目
- 造血干祖细胞 6 项目
- 造血细胞 4 项目
- 间充质基质细胞 20 项目
- 间充质干/祖细胞 205 项目
- 间充质干祖细胞 1 项目
- 间充质细胞 4 项目
- 骨髓基质细胞 1 项目
- 骨髓间质细胞 1 项目
- 髓系细胞 147 项目
- 肾脏细胞 5 项目
- CD4+T细胞 108 项目
- CD8+T细胞 89 项目
- PSC衍生上皮细胞 30 项目
- PSC衍生中胚层 20 项目
- PSC衍生内皮细胞 12 项目
- PSC衍生内胚层 20 项目
- PSC衍生心肌细胞 21 项目
- PSC衍生神经细胞 116 项目
- PSC衍生肝细胞 11 项目
- PSC衍生造血干细胞 25 项目
- PSC衍生间充质细胞 20 项目
- 其他T细胞亚型 25 项目
- 呼吸道细胞 89 项目
- 多巴胺能神经元 6 项目
- 小鼠胚胎成纤维细胞 1 项目
- 浆细胞 12 项目
- 神经元 192 项目
- 调节性T细胞 65 项目
- 骨髓瘤 5 项目
Show More
Show Less
研究领域
- 干细胞生物学 2 项目
- 药物发现和毒理检测 1 项目
Show More
Show Less
产品系列
- STEMdiff 4 项目
Show More
Show Less

EasySep™小鼠TIL(CD45)正选试剂盒



沪公网安备31010102008431号