Cellular barcoding tool for clonal analysis in the hematopoietic system.
Clonal analysis is important for many areas of hematopoietic stem cell research,including in vitro cell expansion,gene therapy,and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle,they generally provide a low-resolution,biased,and incomplete assessment of clonality. To overcome those limitations,we labeled retroviral vectors with random sequence tags or barcodes." On integration�
View Publication
文献
Guilliams M et al. (MAR 2010)
Blood 115 10 1958--68
Skin-draining lymph nodes contain dermis-derived CD103(-) dendritic cells that constitutively produce retinoic acid and induce Foxp3(+) regulatory T cells.
Small intestinal CD103(+) dendritic cells (DCs) have the selective ability to promote de novo generation of regulatory T cells via the production of retinoic acid (RA). Considering that aldehyde dehydrogenase (ALDH) activity controls the production of RA,we used a flow cytometry-based assay to measure ALDH activity at the single-cell level and to perform a comprehensive analysis of the RA-producing DC populations present in lymphoid and nonlymphoid mouse tissues. RA-producing DCs were primarily of the tissue-derived,migratory DC subtype and can be readily found in the skin and in the lungs as well as in their corresponding draining lymph nodes. The RA-producing skin-derived DCs were capable of triggering the generation of regulatory T cells,a finding demonstrating that the presence of RA-producing,tolerogenic DCs is not restricted to the intestinal tract as previously thought. Unexpectedly,the production of RA by skin DCs was restricted to CD103(-) DCs,indicating that CD103 expression does not constitute a universal" marker for RA-producing mouse DCs. Finally�
View Publication
文献
Hü et al. (JAN 2010)
International immunology 22 1 35--44
Intact LFA-1 deactivation promotes T-cell activation and rejection of cardiac allograft.
Leucocyte function-associated antigen-1 (LFA-1) is known to be involved in immune reactions leading to allograft rejection. The role of deactivating LFA-1 in this context has not been investigated yet,although it is accepted that regulating LFA-1 activity is essential for T-cell function. Expressing LFA-1 locked in an active state in mice (LFA-1(d/d)) allowed us to investigate the in vivo function of LFA-1 deactivation for allograft rejection in a model of heterotopic cardiac transplantation. We provide in vivo evidence that regulating LFA-1 activity from an active to an inactive state controls antigen-specific priming and proliferation of T cells in response to allogeneic stimuli. Consequently,defective LFA-1 deactivation significantly prolonged cardiac allograft survival. Furthermore,reduced numbers of alloantigen-specific T cells and non-allo-specific innate immune cells within allografts of LFA-1(d/d) recipients indicate that expression of active LFA-1 impairs inflammatory responses involving all major leucocyte subpopulations. Taken together,our in vivo data suggest that LFA-1 deactivation is important for the formation of inflammatory lesions and rejection of cardiac allografts. Thus,the dynamic regulation of LFA-1 activity,rather than the mere presence of LFA-1,appears to contribute to the control of immune reactions inducing allogeneic transplant rejection.
View Publication
文献
Volanakis EJ et al. (NOV 2009)
Blood 114 20 4451--9
Stage-specific Arf tumor suppression in Notch1-induced T-cell acute lymphoblastic leukemia.
Frequent hallmarks of T-cell acute lymphoblastic leukemia (T-ALL) include aberrant NOTCH signaling and deletion of the CDKN2A locus,which contains 2 closely linked tumor suppressor genes (INK4A and ARF). When bone marrow cells or thymocytes transduced with a vector encoding the constitutively activated intracellular domain of Notch1 (ICN1) are expanded ex vivo under conditions that support T-cell development,cultured progenitors rapidly induce CD4+/CD8+ T-ALLs after infusion into healthy syngeneic mice. Under these conditions,enforced ICN1 expression also drives formation of T-ALLs in unconditioned CD-1 nude mice,bypassing any requirements for thymic maturation. Retention of Arf had relatively modest activity in suppressing the formation of T-ALLs arising from bone marrow-derived ICN1+ progenitors in which the locus is epigenetically silenced,and all resulting Arf (+/+) tumors failed to express the p19(Arf) protein. In striking contrast,retention of Arf in thymocyte-derived ICN1+ donor cells significantly delayed disease onset and suppressed the penetrance of T-ALL. Use of cultured thymocyte-derived donor cells expressing a functionally null Arf-GFP knock-in allele confirmed that ICN1 signaling can induce Arf expression in vivo. Arf activation by ICN1 in T cells thereby provides stage-specific tumor suppression but also a strong selective pressure for deletion of the locus in T-ALL.
View Publication
文献
Jones RB et al. (SEP 2009)
Journal of virology 83 17 8722--32
Human immunodeficiency virus type 1 escapes from interleukin-2-producing CD4+ T-cell responses without high-frequency fixation of mutations.
The presence of interleukin-2 (IL-2)-producing human immunodeficiency virus type 1 (HIV-1)-specific CD4(+) T-cell responses has been associated with the immunological control of HIV-1 replication; however,the causal relationship between these factors remains unclear. Here we show that IL-2-producing HIV-1-specific CD4(+) T cells can be cloned from acutely HIV-1-infected individuals. Despite the early presence of these cells,each of the individuals in the present study exhibited progressive disease,with one individual showing rapid progression. In this rapid progressor,three IL-2-producing HIV-1 Gag-specific CD4(+) T-cell responses were identified and mapped to the following optimal epitopes: HIVWASRELER,REPRGSDIAGT,and FRDYVDRFYKT. Responses to these epitopes in peripheral blood mononuclear cells were monitored longitudinally to textgreater1 year postinfection,and contemporaneous circulating plasma viruses were sequenced. A variant of the FRDYVDRFYKT epitope sequence,FRDYVDQFYKT,was observed in 1/21 plasma viruses sequenced at 5 months postinfection and 1/10 viruses at 7 months postinfection. This variant failed to stimulate the corresponding CD4(+) T-cell clone and thus constitutes an escape mutant. Responses to each of the three Gag epitopes were rapidly lost,and this loss was accompanied by a loss of antigen-specific cells in the periphery as measured by using an FRDYVDRFYKT-presenting major histocompatibility complex class II tetramer. Highly active antiretroviral therapy was associated with the reemergence of FRDYVDRFYKT-specific cells by tetramer. Thus,our data support that IL-2-producing HIV-1-specific CD4(+) T-cell responses can exert immune pressure during early HIV-1 infection but that the inability of these responses to enforce enduring control of viral replication is related to the deletion and/or dysfunction of HIV-1-specific CD4(+) T cells rather than to the fixation of escape mutations at high frequencies.
View Publication
文献
Vetter ML and D'Aquila RT (SEP 2009)
Journal of virology 83 17 8646--54
Cytoplasmic APOBEC3G restricts incoming Vif-positive human immunodeficiency virus type 1 and increases two-long terminal repeat circle formation in activated T-helper-subtype cells.
Cytoplasmic APOBEC3G has been reported to block wild-type human immunodeficiency virus type 1 (HIV-1) infection in some primary cells. It is not known whether cytoplasmic APOBEC3G has residual activity in activated T cells,even though virion-packaged APOBEC3G does restrict HIV-1 in activated T cells. Because we found that APOBEC3G expression is greater in activated CD4(+) T-helper type 1 (Th1) lymphocytes than in T-helper type 2 (Th2) lymphocytes,we hypothesized that residual target cell restriction of incoming Vif-positive virions that lack APOBEC3G,if present,would be greater in Th1 than Th2 lymphocytes. Infection of activated Th1 cells with APOBEC3-negative virions did result in decreased amounts of early and late reverse transcription products and integrated virus relative to infection of activated Th2 cells. Two-long terminal repeat (2-LTR) circles,which are formed in the nucleus when reverse transcripts do not integrate,were increased after APOBEC3-negative virus infection of activated Th1 cells relative to infection of activated Th2 cells. In contrast,2-LTR circle forms were decreased after infection of APOBEC3G-negative cells with APOBEC3G-containing virions relative to APOBEC3G-negative virions and with Th1 cell-produced virions relative to Th2 cell-produced virions. Increasing APOBEC3G in Th2 cells and decreasing APOBEC3G in Th1 cells modulated the target cell phenotypes,indicating causation by APOBEC3G. The comparison between activated Th1 and Th2 cells indicates that cytoplasmic APOBEC3G in activated Th1 cells partially restricts reverse transcription and integration of incoming Vif-positive,APOBEC3G-negative HIV-1. The differing effects of cytoplasmic and virion-packaged APOBEC3G on 2-LTR circle formation indicate a difference in their antiviral mechanisms.
View Publication
文献
Heinonen KM et al. (JUN 2009)
Proceedings of the National Academy of Sciences of the United States of America 106 23 9368--72
Protein tyrosine phosphatases PTP-1B and TC-PTP play nonredundant roles in macrophage development and IFN-gamma signaling.
The control of tyrosine phosphorylation depends on the fine balance between kinase and phosphatase activities. Protein tyrosine phosphatase 1B (PTP-1B) and T cell protein tyrosine phosphatase (TC-PTP) are 2 closely related phosphatases known to control cytokine signaling. We studied the functional redundancy of PTP-1B and TC-PTP by deleting 1 or both copies of these genes by interbreeding TC-PTP and PTP-1B parental lines. Our results indicate that the double mutant (tcptp(-/-)ptp1b(-/-)) is lethal at day E9.5-10.5 of embryonic development with constitutive phosphorylation of Stat1. Mice heterozygous for TC-PTP on a PTP-1B-deficient background (tcptp(+/-)ptp1b(-/-)) developed signs of inflammation. Macrophages from these animals were highly sensitive to IFN-gamma,as demonstrated by increased Stat1 phosphorylation and nitric oxide production. In addition,splenic T cells demonstrated increased IFN-gamma secretion capacity. Mice with deletions of single copies of TC-PTP and PTP-1B (tcptp(+/-)ptp1b(+/-)) exhibited normal development,confirming that these genes are not interchangeable. Together,these data indicate a nonredundant role for PTP-1B and TC-PTP in the regulation of IFN signaling.
View Publication
文献
Fuschiotti P et al. (APR 2009)
Arthritis and rheumatism 60 4 1119--28
Effector CD8+ T cells in systemic sclerosis patients produce abnormally high levels of interleukin-13 associated with increased skin fibrosis.
OBJECTIVE: T lymphocytes play an important role in systemic sclerosis (SSc),a connective tissue disease characterized by inflammation,fibrosis,and vascular damage. While their precise role and antigen specificity are unclear,T cell-derived cytokines likely contribute to the induction of fibrosis. The aim of this study was to establish the role of cytokine dysregulation by T cells in the pathogenesis of SSc. METHODS: To identify relationships between a specific cytokine,T cell subset,and the disease course,we studied a large cohort of patients with diffuse cutaneous SSc (dcSSc) or limited cutaneous SSc (lcSSc). Using Luminex analysis and intracellular cytokine staining,we analyzed the intrinsic ability of CD4+ and CD8+ T cell subsets to produce cytokines following in vitro activation. RESULTS: High levels of the profibrotic type 2 cytokine interleukin-13 (IL-13) were produced following activation of peripheral blood effector CD8+ T cells from SSc patients as compared with normal controls or with patients with rheumatoid arthritis. In contrast,CD4+ T cells showed a lower and more variable level of IL-13 production. This abnormality correlated with the extent of fibrosis and was more pronounced in dcSSc patients than in lcSSc patients. CONCLUSION: Dysregulated IL-13 production by effector CD8+ T cells is important in the pathogenesis of SSc and is critical in the predisposition to more severe forms of cutaneous disease. Our study is the first to identify a specific T cell phenotype that correlates with disease severity in SSc and can be used as a marker of immune dysfunction in SSc and as a novel therapeutic target.
View Publication
文献
Yokota A et al. (APR 2009)
International immunology 21 4 361--77
GM-CSF and IL-4 synergistically trigger dendritic cells to acquire retinoic acid-producing capacity.
Retinoic acid (RA) produced by intestinal dendritic cells (DCs) imprints gut-homing specificity on lymphocytes and enhances Foxp3(+) regulatory T-cell differentiation. The expression of aldehyde dehydrogenase (ALDH) 1A in these DCs is essential for the RA production. However,it remains unclear how the steady-state ALDH1A expression is induced under specific pathogen-free (SPF) conditions. Here,we found that bone marrow-derived dendritic cells (BM-DCs) generated with granulocyte-macrophage colony-stimulating factor (GM-CSF) expressed Aldh1a2,an isoform of Aldh1a,but that fms-related tyrosine kinase 3 ligand-generated BM-DCs did not. DCs from mesenteric lymph nodes (MLN) and Peyer's patches (PP) of normal SPF mice expressed ALDH1A2,but not the other known RA-producing enzymes. Employing a flow cytometric method,we detected ALDH activities in 10-30% of PP-DCs and MLN-DCs. They were CD11c(high)CD4(-/low)CD8alpha(intermediate)CD11b(-/low) F4/80(low/intermediate)CD45RB(low)CD86(high)MHC class II(high)B220(-)CD103(+). Equivalent levels of aldehyde dehydrogenase activity (ALDHact) and ALDH1A2 expression were induced synergistically by GM-CSF and IL-4 in splenic DCs in vitro. In BM-DCs,however,additional signals via Toll-like receptors or RA receptors were required for inducing the equivalent levels. The generated ALDH1A2(+) DCs triggered T cells to express gut-homing receptors or Foxp3. GM-CSF receptor-deficient or vitamin A-deficient mice exhibited marked reductions in the ALDHact in intestinal DCs and the T cell number in the intestinal lamina propria,whereas IL-4 receptor-mediated signals were dispensable. GM-CSF(+)CD11c(-)F4/80(+) cells existed constitutively in the intestinal tissues. The results suggest that GM-CSF and RA itself are pivotal among multiple microenvironment factors that enable intestinal DCs to produce RA.
View Publication
Engineering a stable and selective peptide blocker of the Kv1.3 channel in T lymphocytes.
Kv1.3 potassium channels maintain the membrane potential of effector memory (T(EM)) T cells that are important mediators of multiple sclerosis,type 1 diabetes mellitus,and rheumatoid arthritis. The polypeptide ShK-170 (ShK-L5),containing an N-terminal phosphotyrosine extension of the Stichodactyla helianthus ShK toxin,is a potent and selective blocker of these channels. However,a stability study of ShK-170 showed minor pH-related hydrolysis and oxidation byproducts that were exacerbated by increasing temperatures. We therefore engineered a series of analogs to minimize the formation of these byproducts. The analog with the greatest stability,ShK-192,contains a nonhydrolyzable phosphotyrosine surrogate,a methionine isostere,and a C-terminal amide. ShK-192 shows the same overall fold as ShK,and there is no evidence of any interaction between the N-terminal adduct and the rest of the peptide. The docking configuration of ShK-192 in Kv1.3 shows the N-terminal para-phosphonophenylalanine group lying at the junction of two channel monomers to form a salt bridge with Lys(411) of the channel. ShK-192 blocks Kv1.3 with an IC(50) of 140 pM and exhibits greater than 100-fold selectivity over closely related channels. After a single subcutaneous injection of 100 microg/kg,approximately 100 to 200 pM concentrations of active peptide is detectable in the blood of Lewis rats 24,48,and 72 h after the injection. ShK-192 effectively inhibits the proliferation of T(EM) cells and suppresses delayed type hypersensitivity when administered at 10 or 100 microg/kg by subcutaneous injection once daily. ShK-192 has potential as a therapeutic for autoimmune diseases mediated by T(EM) cells.
View Publication
文献
Azevedo RI et al. (MAR 2009)
Blood 113 13 2999--3007
IL-7 sustains CD31 expression in human naive CD4+ T cells and preferentially expands the CD31+ subset in a PI3K-dependent manner.
The CD31(+) subset of human naive CD4(+) T cells is thought to contain the population of cells that have recently emigrated from the thymus,while their CD31(-) counterparts have been proposed to originate from CD31(+) cells after homeostatic cell division. Naive T-cell maintenance is known to involve homeostatic cytokines such as interleukin-7 (IL-7). It remains to be investigated what role this cytokine has in the homeostasis of naive CD4(+) T-cell subsets defined by CD31 expression. We provide evidence that IL-7 exerts a preferential proliferative effect on CD31(+) naive CD4(+) T cells from adult peripheral blood compared with the CD31(-) subset. IL-7-driven proliferation did not result in loss of CD31 expression,suggesting that CD31(+) naive CD4(+) T cells can undergo cytokine-driven homeostatic proliferation while preserving CD31. Furthermore,IL-7 sustained or increased CD31 expression even in nonproliferating cells. Both proliferation and CD31 maintenance were dependent on the activation of phosphoinositide 3-kinase (PI3K) signaling. Taken together,our data suggest that during adulthood CD31(+) naive CD4(+) T cells are maintained by IL-7 and that IL-7-based therapies may exert a preferential effect on this population.
View Publication
文献
Snyder CM et al. (OCT 2008)
Immunity 29 4 650--9
Memory inflation during chronic viral infection is maintained by continuous production of short-lived, functional T cells.
During persistent murine cytomegalovirus (MCMV) infection,the T cell response is maintained at extremely high intensity for the life of the host. These cells closely resemble human CMV-specific cells,which compose a major component of the peripheral T cell compartment in most people. Despite a phenotype that suggests extensive antigen-driven differentiation,MCMV-specific T cells remain functional and respond vigorously to viral challenge. We hypothesized that a low rate of antigen-driven proliferation would account for the maintenance of this population. Instead,we found that most of these cells divided only sporadically in chronically infected hosts and had a short half-life in circulation. The overall population was supported,at least in part,by memory T cells primed early in infection,as well as by recruitment of naive T cells at late times. Thus,these data show that memory inflation is maintained by a continuous replacement of short-lived,functional cells during chronic MCMV infection.
View Publication