Development of human monoclonal antibodies against respiratory syncytial virus using a high efficiency human hybridoma technique.
Human monoclonal antibodies against RSV have high potential for use as prophylaxis or therapeutic molecules,and they also can be used to define the structure of protective epitopes for rational vaccine design. In the past,however,isolation of human monoclonal antibodies was difficult and inefficient. Here,we describe contemporary methods for activation and proliferation of primary human memory B cells followed by cytofusion to non-secreting myeloma cells by dielectrophoresis to generate human hybridomas secreting RSV-specific monoclonal antibodies. We also provide experimental methods for screening human B cell lines to obtain RSV-specific lines,especially lines secreting neutralizing antibodies.
View Publication
Finstad SL et al. (JUL 2007)
Journal of virology 81 13 7274--9
Diminished potential for B-lymphoid differentiation after murine leukemia virus infection in vivo and in EML hematopoietic progenitor cells.
Infection with a recombinant murine-feline gammaretrovirus,MoFe2,or with the parent virus,Moloney murine leukemia virus,caused significant reduction in B-lymphoid differentiation of bone marrow at 2 to 8 weeks postinfection. The suppression was selective,in that myeloid potential was significantly increased by infection. Analysis of cell surface markers and immunoglobulin H gene rearrangements in an in vitro model demonstrated normal B-lymphoid differentiation after infection but significantly reduced viability of differentiating cells. This reduction in viability may confer a selective advantage on undifferentiated lymphoid progenitors in the bone marrow of gammaretrovirus-infected animals and thereby contribute to the establishment of a premalignant state.
View Publication
Currie KS et al. (MAY 2014)
Journal of medicinal chemistry 57 9 3856--73
Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase.
Spleen tyrosine kinase (Syk) is an attractive drug target in autoimmune,inflammatory,and oncology disease indications. The most advanced Syk inhibitor,R406,1 (or its prodrug form fostamatinib,2),has shown efficacy in multiple therapeutic indications,but its clinical progress has been hampered by dose-limiting adverse effects that have been attributed,at least in part,to the off-target activities of 1. It is expected that a more selective Syk inhibitor would provide a greater therapeutic window. Herein we report the discovery and optimization of a novel series of imidazo[1,2-a]pyrazine Syk inhibitors. This work culminated in the identification of GS-9973,68,a highly selective and orally efficacious Syk inhibitor which is currently undergoing clinical evaluation for autoimmune and oncology indications.
View Publication
Y. Xu et al. ( 2015)
RNA biology 12 1314-22
Downregulation of MicroRNA-152 contributes to high expression of DKK1 in multiple myeloma.
Multiple myeloma (MM) induced bone lesion is one of the most crippling characteristics,and the MM secreted Dickkopf-1 (DKK1) has been reported to play important role in this pathologic process. However,the underlying regulation mechanisms involved in DKK1 expression are still unclear. In this study,we validated the expression patterns of microRNA (miR) 15a,34a,152,and 223 in MM cells and identified that miR-152 was significantly downregulated in the MM group compared with the non-MM group,and that miR-152 level was negatively correlated with the expression of DKK1 in the MM cells. Mechanistic studies showed that manipulating miR-152 artificially in MM cells led to changes in DKK-1 expression,and miR-152 blocked DKK1 transcriptional activity by binding to the 3'UTR of DKK1 mRNA. Importantly,we revealed that MM cells stably expressing miR-152 improved the chemotherapy sensitivity,and counteracted the bone disruption in an intrabone-MM mouse model. Our study contributes better understanding of the regulation mechanism of DKK-1 in MM,and opens up the potential for developing newer therapeutic strategies in the MM treatment.
View Publication
Fathallah I et al. (DEC 2010)
Journal of immunology (Baltimore,Md. : 1950) 185 11 6439--47
EBV latent membrane protein 1 is a negative regulator of TLR9.
EBV infects most of the human population and is associated with a number of human diseases including cancers. Moreover,evasion of the immune system and chronic infection is an essential step for EBV-associated diseases. In this paper,we show that EBV can alter the regulation and expression of TLRs,the key effector molecules of the innate immune response. EBV infection of human primary B cells resulted in the inhibition of TLR9 functionality. Stimulation of TLR9 on primary B cells led to the production of IL-6,TNF-α,and IgG,which was inhibited in cells infected with EBV. The virus exerts its inhibitory function by decreasing TLR9 mRNA and protein levels. This event was observed at early time points after EBV infection of primary cells,as well as in an immortalized lymphoblastoid cell line. We determined that the EBV oncoprotein latent membrane protein 1 (LMP1) is a strong inhibitor of TLR9 transcription. Overexpression of LMP1 in B cells reduced TLR9 promoter activity,mRNA,and protein levels. LMP1 mutants altered in activating the NF-κB pathway prevented TLR9 promoter deregulation. Blocking the NF-κB pathway recovered TLR9 promoter activity. Mutating the NF-κB cis element on the TLR9 promoter restored luciferase transcription in the presence of LMP1. Finally,deletion of the LMP1 gene in the EBV genome abolished the ability of the virus to induce TLR9 downregulation. Our study describes a mechanism used by EBV to suppress the host immune response by deregulating the TLR9 transcript through LMP1-mediated NF-κB activation.
View Publication
M. Epeldegui et al. (jun 2019)
Scientific reports 9 1 9371
Elevated numbers of PD-L1 expressing B cells are associated with the development of AIDS-NHL.
The risk for non-Hodgkin lymphoma (NHL) is markedly increased in persons living with human immunodeficiency virus (HIV) infection,and remains elevated in those on anti-retroviral therapy (cART). Both the loss of immunoregulation of Epstein-Barr virus (EBV) infected cells,as well as chronic B-cell activation,are believed to contribute to the genesis of AIDS-related NHL (AIDS-NHL). However,the mechanisms that lead to AIDS-NHL have not been completely defined. A subset of B cells that is characterized by the secretion of IL10,as well as the expression of the programmed cell death ligand-1 (PD-L1/CD274),was recently described. These PD-L1+ B cells can exert regulatory function,including the dampening of T-cell activation,by interacting with the program cell death protein (PD1) on target cells. The role of PD-L1+ B cells in the development of AIDS-NHL has not been explored. We assessed B cell PD-L1 expression on B cells preceding AIDS-NHL diagnosis in a nested case-control study of HIV+ subjects who went on to develop AIDS-NHL,as well as HIV+ subjects who did not,using multi-color flow cytometry. Archival frozen viable PBMC were obtained from the UCLA Multicenter AIDS Cohort Study (MACS). It was seen that the number of CD19+CD24++CD38++and CD19+PD-L1+cells was significantly elevated in cases 1-4 years prior to AIDS-NHL diagnosis,compared to controls,raising the possibility that these cells may play a role in the etiology of AIDS-NHL. Interestingly,most PD-L1+ expression on CD19+ cells was seen on CD19+CD24++CD38++ cells. In addition,we showed that HIV can directly induce PD-L1 expression on B cells through interaction of virion-associated CD40L with CD40 on B cells.
View Publication
Zan H et al. (JAN 2011)
Molecular immunology 48 4 610--22
Endonuclease G plays a role in immunoglobulin class switch DNA recombination by introducing double-strand breaks in switch regions.
Immunoglobulin (Ig) class switch DNA recombination (CSR) is the crucial mechanism diversifying the biological effector functions of antibodies. Generation of double-strand DNA breaks (DSBs),particularly staggered DSBs,in switch (S) regions of the upstream and downstream CH genes involved in the specific recombination process is an absolute requirement for CSR. Staggered DSBs would be generated through deamination of dCs on opposite DNA strands by activation-induced cytidine deaminase (AID),subsequent dU deglycosylation by uracil DNA glycosylase (Ung) and abasic site nicking by apurinic/apyrimidic endonuclease. However,consistent with the findings that significant amounts of DSBs can be detected in the IgH locus in the absence of AID or Ung,we have shown in human and mouse B cells that AID generates staggered DSBs not only by cleaving intact double-strand DNA,but also by processing blunt DSB ends generated in an AID-independent fashion. How these AID-independent DSBs are generated is still unclear. It is possible that S region DNA may undergo AID-independent cleavage by structure-specific nucleases,such as endonuclease G (EndoG). EndoG is an abundant nuclease in eukaryotic cells. It cleaves single and double-strand DNA,primarily at dG/dC residues,the preferential sites of DSBs in S region DNA. We show here that EndoG can localize to the nucleus of B cells undergoing CSR and binds to S region DNA,as shown by specific chromatin immunoprecipitation assays. Using knockout EndoG(-/-) mice and EndoG(-/-) B cells,we found that EndoG deficiency resulted in a two-fold reduction in CSR in vivo and in vitro,as demonstrated by reduced cell surface IgG1,IgG2a,IgG3 and IgA,reduced secreted IgG1,reduced circle Iγ1-Cμ,Iγ3-Cμ,Iɛ-Cμ,Iα-Cμ transcripts,post-recombination Iμ-Cγ1,Iμ-Cγ3,Iμ-Cɛ and Iμ-Cα transcripts. In addition to reduced CSR,EndoG(-/-) mice showed a significantly altered spectrum of mutations in IgH J(H)-iEμ DNA. Impaired CSR in EndoG(-/-) B cells did not stem from altered B cell proliferation or apoptosis. Rather,it was associated with significantly reduced frequency of DSBs. Thus,our findings determine a role for EndoG in the generation of S region DSBs and CSR.
View Publication
Zhang Z et al. (SEP 2003)
The EMBO journal 22 18 4759--69
Enforced expression of EBF in hematopoietic stem cells restricts lymphopoiesis to the B cell lineage.
Mice deficient in early B cell factor (EBF) are blocked at the progenitor B cell stage prior to immunoglobulin gene rearrangement. The EBF-dependent block in B cell development occurs near the onset of B-lineage commitment,which raises the possibility that EBF may act instructively to specify the B cell fate from uncommitted,multipotential progenitor cells. To test this hypothesis,we transduced enriched hematopoietic progenitor cells with a retroviral vector that coexpressed EBF and the green fluorescent protein (GFP). Mice reconstituted with EBF-expressing cells showed a near complete absence of T lymphocytes. Spleen and peripheral blood samples were textgreater95 and 90% GFP+EBF+ mature B cells,respectively. Both NK and lymphoid-derived dendritic cells were also significantly reduced compared with control-transplanted mice. These data suggest that EBF can restrict lymphopoiesis to the B cell lineage by blocking development of other lymphoid-derived cell pathways.
View Publication
Iwasaki-Arai J et al. (MAY 2003)
The Journal of experimental medicine 197 10 1311--22
Enforced granulocyte/macrophage colony-stimulating factor signals do not support lymphopoiesis, but instruct lymphoid to myelomonocytic lineage conversion.
We evaluated the effects of ectopic granulocyte/macrophage colony-stimulating factor (GM-CSF) signals on hematopoietic commitment and differentiation. Lineage-restricted progenitors purified from mice with the ubiquitous transgenic human GM-CSF receptor (hGM-CSFR) were used for the analysis. In cultures with hGM-CSF alone,hGM-CSFR-expressing (hGM-CSFR+) granulocyte/monocyte progenitors (GMPs) and megakaryocyte/erythrocyte progenitors (MEPs) exclusively gave rise to granulocyte/monocyte (GM) and megakaryocyte/erythroid (MegE) colonies,respectively,providing formal proof that GM-CSF signals support the GM and MegE lineage differentiation without affecting the physiological myeloid fate. hGM-CSFR transgenic mice were crossed with mice deficient in interleukin (IL)-7,an essential cytokine for T and B cell development. Administration of hGM-CSF in these mice could not restore T or B lymphopoiesis,indicating that enforced GM-CSF signals cannot substitute for IL-7 to promote lymphopoiesis. Strikingly,textgreater50% hGM-CSFR+ common lymphoid progenitors (CLPs) and textgreater20% hGM-CSFR+ pro-T cells gave rise to granulocyte,monocyte,and/or myeloid dendritic cells,but not MegE lineage cells in the presence of hGM-CSF. Injection of hGM-CSF into mice transplanted with hGM-CSFR+ CLPs blocked their lymphoid differentiation,but induced development of GM cells in vivo. Thus,hGM-CSF transduces permissive signals for myeloerythroid differentiation,whereas it transmits potent instructive signals for the GM differentiation to CLPs and early T cell progenitors. These data suggest that a majority of CLPs and a fraction of pro-T cells possess plasticity for myelomonocytic differentiation that can be activated by ectopic GM-CSF signals,supporting the hypothesis that the down-regulation of GM-CSFR is a critical event in producing cells with a lymphoid-restricted lineage potential.
View Publication
Portis T and Longnecker R (JAN 2003)
Journal of virology 77 1 105--14
Epstein-Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development.
Epstein-Barr virus (EBV) is associated with the development of malignant lymphomas and lymphoproliferative disorders in immunocompromised individuals. The LMP2A protein of EBV is thought to play a central role in this process by allowing the virus to persist in latently infected B lymphocytes. We have demonstrated that LMP2A,when expressed in B cells of transgenic mice,allows normal B-cell developmental checkpoints to be bypassed. To identify cellular genes targeted by LMP2A that are involved in this process,we have utilized DNA microarrays to compare gene transcription in B cells from wild-type versus LMP2A transgenic mice. In B cells from LMP2A transgenic mice,we observed decreased expression of many genes associated with normal B-cell development as well as reduced levels of the transcription factors that regulate their expression. In particular,expression of the transcription factor E2A was down-regulated in bone marrow and splenic B cells. Furthermore,E2A activity was inhibited in these cells as determined by decreased DNA binding and reduced expression of its target genes,including the transcription factors early B-cell factor and Pax-5. Expression of two E2A inhibitors,Id2 and SCL,was up-regulated in splenic B cells expressing LMP2A,suggesting a possible mechanism for E2A inhibition. These results indicate that LMP2A deregulates transcription factor expression and activity in developing B cells,and this likely allows for a bypass of normal signaling events required for proper B-cell development. The ability of LMP2A to interfere with B-cell transcription factor regulation has important implications regarding its role in EBV latency.
View Publication
Li H et al. (MAY 2007)
The Journal of clinical investigation 117 5 1314--23
Ewing sarcoma gene EWS is essential for meiosis and B lymphocyte development.
Ewing sarcoma gene EWS encodes a putative RNA-binding protein with proposed roles in transcription and splicing,but its physiological role in vivo remains undefined. Here,we have generated Ews-deficient mice and demonstrated that EWS is required for the completion of B cell development and meiosis. Analysis of Ews(-/-) lymphocytes revealed a cell-autonomous defect in precursor B lymphocyte (pre-B lymphocyte) development. During meiosis,Ews-null spermatocytes were deficient in XY bivalent formation and showed reduced meiotic recombination,resulting in massive apoptosis and complete arrest in gamete maturation. Inactivation of Ews in mouse embryonic fibroblasts resulted in premature cellular senescence,and the mutant animals showed hypersensitivity to ionizing radiation. Finally,we showed that EWS interacts with lamin A/C and that loss of EWS results in a reduced lamin A/C expression. Our findings reveal essential functions for EWS in pre-B cell development and meiosis,with proposed roles in DNA pairing and recombination/repair mechanisms. Furthermore,we demonstrate a novel role of EWS in cellular senescence,possibly through its interaction and modulation of lamin A/C.
View Publication
Giassi LJ et al. (AUG 2008)
Experimental biology and medicine (Maywood,N.J.) 233 8 997--1012
Expanded CD34+ human umbilical cord blood cells generate multiple lymphohematopoietic lineages in NOD-scid IL2rgamma(null) mice.
Umbilical cord blood (UCB) is increasingly being used for human hematopoietic stem cell (HSC) transplantation in children but often requires pooling multiple cords to obtain sufficient numbers for transplantation in adults. To overcome this limitation,we have used an ex vivo two-week culture system to expand the number of hematopoietic CD34(+) cells in cord blood. To assess the in vivo function of these expanded CD34(+) cells,cultured human UCB containing 1 x 10(6) CD34(+) cells were transplanted into conditioned NOD-scid IL2rgamma(null) mice. The expanded CD34(+) cells displayed short- and long-term repopulating cell activity. The cultured human cells differentiated into myeloid,B-lymphoid,and erythroid lineages,but not T lymphocytes. Administration of human recombinant TNFalpha to recipient mice immediately prior to transplantation promoted human thymocyte and T-cell development. These T cells proliferated vigorously in response to TCR cross-linking by anti-CD3 antibody. Engrafted TNFalpha-treated mice generated antibodies in response to T-dependent and T-independent immunization,which was enhanced when mice were co-treated with the B cell cytokine BLyS. Ex vivo expanded CD34(+) human UCB cells have the capacity to generate multiple hematopoietic lineages and a functional human immune system upon transplantation into TNFalpha-treated NOD-scid IL2rgamma(null) mice.
View Publication