Nagano M et al. (AUG 2010)
Stem cells and development 19 8 1195--210
Hypoxia responsive mesenchymal stem cells derived from human umbilical cord blood are effective for bone repair.
Mesenchymal stem cells (MSCs) are highly useful in a variety of cell therapies owing to their multipotential differentiation capability. MSCs derived from umbilical cord blood are generally isolated by their plastic adherence without using specific cell surface markers and examined for their osteogenic,adipogenic,and chondrogenic differentiation properties retrospectively. Here,we report 2 subpopulations of MSCs,separated based on aldehyde dehydrogenase (ALDH) activity. MSCs with a high ALDH activity (Alde-High) proliferated more than those with a low ALDH activity (Alde-Low). Alde-High MSCs had a greater ability to differentiate than Alde-Low MSCs in in vitro culture. Transplantation of Alde-High MSCs into fractured mouse femurs enabled early repair of tissues and rapid bone substitution. Alde-High MSCs were also more responsive to hypoxia than Alde-Low MSCs,with the upregulation of Flt-1,CXCR4,and Angiopoietin-2. Thus,MSCs with a high ALDH activity might serve as an effective therapeutic tool for healing fractures within a short period of time.
View Publication
Yoon D et al. (SEP 2006)
The Journal of biological chemistry 281 35 25703--11
Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development.
Hypoxia-inducible factor-1 (HIF-1) regulates the transcription of genes whose products play critical roles in energy metabolism,erythropoiesis,angiogenesis,and cell survival. Limited information is available concerning its function in mammalian hematopoiesis. Previous studies have demonstrated that homozygosity for a targeted null mutation in the Hif1alpha gene,which encodes the hypoxia-responsive alpha subunit of HIF-1,causes cardiac,vascular,and neural malformations resulting in lethality by embryonic day 10.5 (E10.5). This study revealed reduced myeloid multilineage and committed erythroid progenitors in HIF-1alpha-deficient embryos,as well as decreased hemoglobin content in erythroid colonies from HIF-1alpha-deficient yolk sacs at E9.5. Dysregulation of erythropoietin (Epo) signaling was evident from a significant decrease in mRNA levels of Epo receptor (EpoR) in Hif1alpha-/- yolk sac as well as Epo and EpoR mRNA in Hif1alpha-/- embryos. The erythropoietic defects in HIF-1alpha-deficient erythroid colonies could not be corrected by cytokines,such as vascular endothelial growth factor and Epo,but were ameliorated by Fe-SIH,a compound delivering iron into cells independently of iron transport proteins. Consistent with profound defects in iron homeostasis,Hif1alpha-/- yolk sac and/or embryos demonstrated aberrant mRNA levels of hepcidin,Fpn1,Irp1,and frascati. We conclude that dysregulated expression of genes encoding Epo,EpoR,and iron regulatory proteins contributes to defective erythropoiesis in Hif1alpha-/- yolk sacs. These results identify a novel role for HIF-1 in the regulation of iron homeostasis and reveal unexpected regulatory differences in Epo/EpoR signaling in yolk sac and embryonic erythropoiesis.
View Publication
Spike BT et al. (SEP 2007)
Blood 110 6 2173--81
Hypoxic stress underlies defects in erythroblast islands in the Rb-null mouse.
Definitive erythropoiesis occurs in islands composed of a central macrophage in contact with differentiating erythroblasts. Erythroid maturation including enucleation can also occur in the absence of macrophages both in vivo and in vitro. We reported previously that loss of Rb induces cell-autonomous defects in red cell maturation under stress conditions,while other reports have suggested that the failure of Rb-null erythroblasts to enucleate is due to defects in associated macrophages. Here we show that erythropoietic islands are disrupted by hypoxic stress,such as occurs in the Rb-null fetal liver,that Rb(-/-) macrophages are competent for erythropoietic island formation in the absence of exogenous stress and that enucleation defects persist in Rb-null erythroblasts irrespective of macrophage function.
View Publication
Twu Y-C et al. (DEC 2007)
Blood 110 13 4526--34
I branching formation in erythroid differentiation is regulated by transcription factor C/EBPalpha.
The histo-blood group i and I antigens have been characterized as straight and branched repeats of N-acetyllactosamine,respectively,and the conversion of the straight-chain i to the branched-chain I structure on red cells is regulated to occur after birth. It has been demonstrated that the human I locus expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC,and that the last of these is responsible for the I branching formation on red cells. In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition in erythroid differentiation is determined by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha),which enhances transcription of the IGnTC gene,consequently leading to formation of the I antigen. Further investigation suggested that C/EBPalpha IGnTC-activation activity is modulated at a posttranslational level,and that the phosphorylation status of C/EBPalpha may have a crucial effect. Results from studies using adult and cord erythropoietic cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hemopoietic cells demonstrating the determining role of C/EBPalpha in the induction of the IGnTC gene as well as in I antigen expression.
View Publication
Wognum AW et al. ( )
Archives of medical research 34 6 461--75
Identification and isolation of hematopoietic stem cells.
Hematopoietic stem cells (HSCs) are defined by their ability to repopulate all of the hematopoietic lineages in vivo and sustain the production of these cells for the life span of the individual. In the absence of reliable direct markers for HSCs,their identification and enumeration depends on functional long-term,multilineage,in vivo repopulation assays. The extremely low frequency of HSCs in any tissue and the absence of a specific HSC phenotype have made their purification and characterization a highly challenging goal. HSCs and primitive hematopoietic cells can be distinguished from mature blood cells by their lack of lineage-specific markers and presence of certain other cell-surface antigens,such as CD133 (for human cells) and c-kit and Sca-1 (for murine cells). Functional analyses of purified subpopulations of primitive hematopoietic cells have led to the development of several procedures for isolating cell populations that are highly enriched in cells with in vivo stem cell activity. Simplified methods for obtaining these cells at high yield have been important to the practical exploitation of such advances. This article reviews recent progress in identifying human and mouse HSCs and current techniques for their purification.
View Publication
Kuç et al. (FEB 2003)
Blood 101 3 869--76
Identification of a novel class of human adherent CD34- stem cells that give rise to SCID-repopulating cells.
Here we describe the in vitro generation of a novel adherent cell fraction derived from highly enriched,mobilized CD133(+) peripheral blood cells after their culture with Flt3/Flk2 ligand and interleukin-6 for 3 to 5 weeks. These cells lack markers of hematopoietic stem cells,endothelial cells,mesenchymal cells,dendritic cells,and stromal fibroblasts. However,all adherent cells expressed the adhesion molecules VE-cadherin,CD54,and CD44. They were also positive for CD164 and CD172a (signal regulatory protein-alpha) and for a stem cell antigen defined by the recently described antibody W7C5. Adherent cells can either spontaneously or upon stimulation with stem cell factor give rise to a transplantable,nonadherent CD133(+)CD34(-) stem cell subset. These cells do not generate in vitro hematopoietic colonies. However,their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice induced substantially higher long-term multilineage engraftment compared with that of freshly isolated CD34(+) cells,suggesting that these cells are highly enriched in SCID-repopulating cells. In addition to cells of the myeloid lineage,nonadherent CD34(-) cells were able to give rise to human cells with B-,T-,and natural killer-cell phenotype. Hence,these cells possess a distinct in vivo differentiation potential compared with that of CD34(+) stem cells and may therefore provide an alternative to CD34(+) progenitor cells for transplantation.
View Publication
Rutella S et al. (SEP 2003)
Journal of immunology (Baltimore,Md. : 1950) 171 6 2977--88
Identification of a novel subpopulation of human cord blood CD34-CD133-CD7-CD45+lineage- cells capable of lymphoid/NK cell differentiation after in vitro exposure to IL-15.
The hemopoietic stem cell (HSC) compartment encompasses cell subsets with heterogeneous proliferative and developmental potential. Numerous CD34(-) cell subsets that might reside at an earlier stage of differentiation than CD34(+) HSCs have been described and characterized within human umbilical cord blood (UCB). We identified a novel subpopulation of CD34(-)CD133(-)CD7(-)CD45(dim)lineage (lin)(-) HSCs contained within human UCB that were endowed with low but measurable extended long-term culture-initiating cell activity. Exposure of CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs to stem cell factor preserved cell viability and was associated with the following: 1) concordant expression of the stem cell-associated Ags CD34 and CD133,2) generation of CFU-granulocyte-macrophage,burst-forming unit erythroid,and megakaryocytic aggregates,3) significant extended long-term culture-initiating cell activity,and 4) up-regulation of mRNA signals for myeloperoxidase. At variance with CD34(+)lin(-) cells,CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs maintained with IL-15,but not with IL-2 or IL-7,proliferated vigorously and differentiated into a homogeneous population of CD7(+)CD45(bright)CD25(+)CD44(+) lymphoid progenitors with high expression of the T cell-associated transcription factor GATA-3. Although they harbored nonclonally rearranged TCRgamma genes,IL-15-primed CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs failed to achieve full maturation,as manifested in their CD3(-)TCRalphabeta(-)gammadelta(-) phenotype. Conversely,culture on stromal cells supplemented with IL-15 was associated with the acquisition of phenotypic and functional features of NK cells. Collectively,CD34(-)CD133(-)CD7(-)CD45(dim)lin(-) HSCs from human UCB displayed an exquisite sensitivity to IL-15 and differentiated into lymphoid/NK cells. Whether the transplantation of CD34(-)lin(-) HSCs possessing T/NK cell differentiation potential may impact on immunological reconstitution and control of minimal residual disease after HSC transplantation for autoimmune or malignant diseases remains to be determined.
View Publication
Corti S et al. (APR 2006)
Stem cells (Dayton,Ohio) 24 4 975--85
Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity.
Stem cells are undifferentiated cells defined by their ability to self-renew and differentiate to progenitors and terminally differentiated cells. Stem cells have been isolated from almost all tissues,and an emerging idea is that they share common characteristics such as the presence of ATP-binding cassette transporter G2 and high telomerase and aldehyde dehydrogenase (ALDH) activity,raising the hypothesis of a set of universal stem cell markers. In the present study,we describe the isolation of primitive neural stem cells (NSCs) from adult and embryonic murine neurospheres and dissociated tissue,based on the expression of high levels of ALDH activity. Single-cell suspension was stained with a fluorescent ALDH substrate termed Aldefluor and then analyzed by flow cytometry. A population of cells with low side scatter (SSC(lo)) and bright ALDH (ALDH(br)) activity was isolated. SSC(lo)ALDH(br) cells are capable of self-renewal and are able to generate new neurospheres and neuroepithelial stem-like cells. Furthermore,these cells are multipotent,differentiating both in neurons and macroglia,as determined by immunocytochemistry and real-time reverse transcription-polymerase chain reaction analysis. To evaluate the engraftment potential of SSC(lo)ALDH(br) cells in vivo,we transplanted them into mouse brain. Donor-derived neurons with mature morphology were detected in the cortex and subcortical areas,demonstrating the capacity of this cell population to differentiate appropriately in vivo. The ALDH expression assay is an effective method for direct identification of NSCs,and improvement of the stem cell isolation protocol may be useful in the development of a cell-mediated therapeutic strategy for neurodegenerative diseases.
View Publication
Rank G et al. (SEP 2010)
Blood 116 9 1585--92
Identification of a PRMT5-dependent repressor complex linked to silencing of human fetal globin gene expression.
Defining the molecular mechanisms underpinning fetal (gamma) globin gene silencing may provide strategies for reactivation of gamma-gene expression,a major therapeutic objective in patients with beta-thalassemia and sickle cell disease (SCD). We have previously demonstrated that symmetric methylation of histone H4 Arginine 3 (H4R3me2s) by the protein arginine methyltransferase PRMT5 is required for recruitment of the DNA methyltransferase DNMT3A to the gamma-promoter,and subsequent DNA methylation and gene silencing. Here we show in an erythroid cell line,and in primary adult erythroid progenitors that PRMT5 induces additional repressive epigenetic marks at the gamma-promoter through the assembly of a multiprotein repressor complex containing the histone modifying enzymes SUV4-20h1,casein kinase 2alpha (CK2alpha),and components of the nucleosome remodeling and histone deacetylation complex. Expression of a mutant form of PRMT5 lacking methyltransferase activity or shRNA-mediated knockdown of SUV4-20h1 resulted in loss of complex binding to the gamma-promoter,reversal of both histone and DNA repressive epigenetic marks,and increased gamma-gene expression. The repressive H4K20me3 mark induced by SUV4-20h1 is enriched on the gamma-promoter in erythroid progenitors from adult bone marrow compared with cord blood,suggesting developmental specificity. These studies define coordinated epigenetic events linked to fetal globin gene silencing,and provide potential therapeutic targets for the treatment of beta-thalassemia and SCD.
View Publication
Zhang Y et al. (SEP 2009)
Biochemical and biophysical research communications 386 4 729--33
Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity.
As a member of the class III histone deacetylases,Sirtuin-2 (SIRT2) is critical in cell cycle regulation which makes it a potential target for cancer therapeutics. In this study,we identified a novel SIRT2 inhibitor,AC-93253,with IC(50) of 6 microM in vitro. The compound is selective,inhibiting SIRT2 7.5- and 4-fold more potently than the closely related SIRT1 and SIRT3,respectively. AC-93253 significantly enhanced acetylation of tubulin,p53,and histone H4,confirming SIRT2 and SIRT1 as its cellular targets. AC-93253 as a single agent exhibited submicromolar selective cytotoxicity towards all four tumor cell lines tested with a therapeutic window up to 200-fold,comparing to any of the three normal cell types tested. Results from high content analysis suggested that AC-93253 significantly triggered apoptosis. Taken together,SIRT2 selective inhibitor AC-93253 may serve as a novel chemical scaffold for structure-activity relationship study and future lead development.
View Publication
Quelen C et al. (MAY 2011)
Blood 117 21 5719--22
Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants.
Acute basophilic leukemia (ABL) is a rare subtype of acute leukemia with clinical features and symptoms related to hyperhistaminemia because of excessive growth of basophils. No known recurrent cytogenetic abnormality is associated with this leukemia. Rare cases of t(X;6)(p11;q23) translocation have been described but these were sporadic. We report here 4 cases of ABL with a t(X;6)(p11;q23) translocation occurring in male infants. Because of its location on chromosome 6q23,MYB was a good candidate gene. Our molecular investigations,based on fluorescence in situ hybridization and rapid amplification of cDNA ends,revealed that the translocation generated a MYB-GATA1 fusion gene. Expression of MYB-GATA1 in mouse lineage-negative cells committed them to the granulocyte lineage and blocked at an early stage of differentiation. Taken together,these results establish,for the first time,a link between a recurrent chromosomal translocation and the development of this particular subtype of infant leukemia.
View Publication
DiMascio L et al. (MAR 2007)
The Journal of Immunology 178 6 3511--3520
Identification of Adiponectin as a Novel Hemopoietic Stem Cell Growth Factor
The hemopoietic microenvironment consists of a diverse repertoire of cells capable of providing signals that influence hemopoietic stem cell function. Although the role of osteoblasts and vascular endothelial cells has recently been characterized,the function of the most abundant cell type in the bone marrow,the adipocyte,is less defined. Given the emergence of a growing number of adipokines,it is possible that these factors may also play a role in regulating hematopoiesis. Here,we investigated the role of adiponectin,a secreted molecule derived from adipocytes,in hemopoietic stem cell (HSC) function. We show that adiponectin is expressed by components of the HSC niche and its receptors AdipoR1 and AdipoR2 are expressed by HSCs. At a functional level,adiponectin influences HSCs by increasing their proliferation,while retaining the cells in a functionally immature state as determined by in vitro and in vivo assays. We also demonstrate that adiponectin signaling is required for optimal HSC proliferation both in vitro and in long term hemopoietic reconstitution in vivo. Finally we show that adiponectin stimulation activates p38 MAPK,and that inhibition of this pathway abrogates adiponectin's proliferative effect on HSCs. These studies collectively identify adiponectin as a novel regulator of HSC function and suggest that it acts through a p38 dependent pathway.
View Publication