Visus C et al. (NOV 2007)
Cancer research 67 21 10538--45
Identification of human aldehyde dehydrogenase 1 family member A1 as a novel CD8+ T-cell-defined tumor antigen in squamous cell carcinoma of the head and neck.
Few epitopes are available for vaccination therapy of patients with squamous cell carcinoma of the head and neck (SCCHN). Using a tumor-specific CTL,aldehyde dehydrogenase 1 family member A1 (ALDH1A1) was identified as a novel tumor antigen in SCCHN. Mass spectral analysis of peptides in tumor-derived lysates was used to determine that the CTL line recognized the HLA-A*0201 (HLA-A2) binding ALDH1A1(88-96) peptide. Expression of ALDH1A1 in established SCCHN cell lines,normal mucosa,and primary keratinocytes was studied by quantitative reverse transcription-PCR and immunostaining. Protein expression was further defined by immunoblot analysis,whereas ALDH1A1 activity was measured using ALDEFLUOR. ALDH1A1(88-96) peptide was identified as an HLA-A2-restricted,naturally presented,CD8(+) T-cell-defined tumor peptide. ALDH1A1(88-96) peptide-specific CD8(+) T cells recognized only HLA-A2(+) SCCHN cell lines,which overexpressed ALDH1A1,as well as targets transfected with ALDH1A1 cDNA. Target recognition was blocked by anti-HLA class I and anti-HLA-A2 antibodies. SCCHN cell lines overexpressing ALDH1 had high enzymatic activity. ALDH1A1 protein was expressed in 12 of 17 SCCHN,and 30 of 40 dysplastic mucosa samples,but not in normal mucosa. ALDH1A1 expression levels in target cells correlated with their recognition by ALDH1A1(88-96) peptide-specific CD8(+) T cells. Our findings identify ALDH1A1,a metabolic antigen,as a potential target for vaccination therapy in the cohort of SCCHN subjects with tumors overexpressing this protein. A smaller cohort of subjects with SCCHN,whose tumors express little to no ALDH1A1,and thus are deficient in conversion of retinal to retinoic acid,could benefit from chemoprevention therapy.
View Publication
Fang B et al. (APR 2005)
Blood 105 7 2733--40
Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics.
Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. Interestingly,the BCR/ABL fusion gene,which is present in chronic myelogenous leukemia (CML),was also detected in the endothelial cells of patients with CML,suggesting that CML might originate from hemangioblastic progenitor cells that can give rise to both blood cells and endothelial cells. Here we isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of 17 Philadelphia chromosome-positive (Ph+) patients with CML and found that these cells could differentiate into malignant blood cells and phenotypically defined endothelial cells at the single-cell level. These findings provide direct evidence for the first time that rearrangement of the BCR/ABL gene might happen at or even before the level of hemangioblastic progenitor cells,thus resulting in detection of the BCR/ABL fusion gene in both blood and endothelial cells.
View Publication
Aichberger KJ et al. (DEC 2009)
Blood 114 26 5342--51
Identification of proapoptotic Bim as a tumor suppressor in neoplastic mast cells: role of KIT D816V and effects of various targeted drugs.
Systemic mastocytosis (SM) is a myeloid neoplasm involving mast cells (MCs) and their progenitors. In most cases,neoplastic cells display the D816V-mutated variant of KIT. KIT D816V exhibits constitutive tyrosine kinase (TK) activity and has been implicated in increased survival and growth of neoplastic MCs. Recent data suggest that the proapoptotic BH3-only death regulator Bim plays a role as a tumor suppressor in various myeloid neoplasms. We found that KIT D816V suppresses expression of Bim in Ba/F3 cells. The KIT D816-induced down-regulation of Bim was rescued by the KIT-targeting drug PKC412/midostaurin. Both PKC412 and the proteasome-inhibitor bortezomib were found to decrease growth and promote expression of Bim in MC leukemia cell lines HMC-1.1 (D816V negative) and HMC-1.2 (D816V positive). Both drugs were also found to counteract growth of primary neoplastic MCs. Furthermore,midostaurin was found to cooperate with bortezomib and with the BH3-mimetic obatoclax in producing growth inhibition in both HMC-1 subclones. Finally,a Bim-specific siRNA was found to rescue HMC-1 cells from PKC412-induced cell death. Our data show that KIT D816V suppresses expression of proapoptotic Bim in neoplastic MCs. Targeting of Bcl-2 family members by drugs promoting Bim (re)-expression,or by BH3-mimetics such as obatoclax,may be an attractive therapy concept in SM.
View Publication
Identification of unipotent megakaryocyte progenitors in human hematopoiesis.
The developmental pathway for human megakaryocytes remains unclear and the definition of pure unipotent megakaryocyte progenitor is still controversial. Using single-cell transcriptome analysis,we have identified a cluster of cells within immature hematopoietic stem and progenitor cell populations that specifically express genes related to the megakaryocyte lineage. We used CD41 as a positive marker to identify these cells within the CD34(+)CD38(+)IL-3Rα(dim)CD45RA(-) common myeloid progenitor (CMP) population. These cells lacked erythroid and granulocyte/macrophage potential,but exhibited robust differentiation into the megakaryocyte lineage at a high frequency,both in vivo and in vitro The efficiency and expansion potential of these cells exceeded those of conventional bipotent megakaryocyte/erythrocyte progenitors. Accordingly,the CD41(+) CMP was defined as a unipotent megakaryocyte progenitor (MegP) that is likely to represent the major pathway for human megakaryopoiesis,independent of canonical megakaryocyte-erythroid lineage bifurcation. In the bone marrow of patients with essential thrombocythemia,the MegP population was significantly expanded in the context of a high burden of Janus kinase 2 mutations. Thus,the prospectively isolatable and functionally homogeneous human MegP will be useful for the elucidation of the mechanisms underlying normal and malignant human hematopoiesis.
View Publication
Tan W et al. (MAY 2006)
Journal of immunology (Baltimore,Md. : 1950) 176 10 6186--93
IL-17 receptor knockout mice have enhanced myelotoxicity and impaired hemopoietic recovery following gamma irradiation.
IL-17A is a T cell-derived proinflammatory cytokine required for microbial host defense. In vivo expression profoundly stimulates granulopoiesis. At baseline,the hemopoietic system of IL-17R knockout mice (IL-17Ra(-/-)) is,with the exception of increased splenic progenitor numbers,indistinguishable from normal control mice. However,when challenged with gamma irradiation,hemopoietic toxicity is significantly more pronounced in IL-17Ra(-/-) animals,with the gamma irradiation-associated LD(50) being reduced by 150 rad. In spleen-derived T cells,gamma irradiation induces significant murine IL-17A expression in vivo but not in vitro. After sublethal radiation injury (500 rad),the infusion of purified CD4(+) T cells enhances hemopoietic recovery. This recovery is significantly impaired in IL-17Ra(-/-) animals or after in vivo blockade of IL-17Ra in normal mice,resulting in a reduction of hemopoietic precursors by 50% and of neutrophils by 43%. Following sublethal radiation-induced myelosuppression,in vivo overexpression of murine IL-17A in normal mice substantially enhanced granulopoietic restoration in mice with a 4-fold increase in neutrophils and splenic precursors on day 8 (CFU-granulocyte-macrophage/granulocyte-erythrocyte-megakaryocyte-monocyte,CFU-high proliferative potential),as well as 2- and 3-fold increases of bone marrow precursors,respectively. This establishes IL-17A as a hemopoietic response cytokine to radiation injury in mice and an inducible mechanism that is required for recovery of granulopoiesis after radiation injury.
View Publication
Oehler L et al. (SEP 2003)
Blood 102 6 2240--2
Imatinib mesylate inhibits autonomous erythropoiesis in patients with polycythemia vera in vitro.
The overproduction of red blood cells in patients with polycythemia vera (PV) is reflected in vitro by the formation of erythroid burst-forming units (BFU-Es) in the absence of exogenous erythropoietin. In contrast to other myeloproliferative disorders,the molecular mechanism of PV is unknown and no specific chromosomal abnormality has been described. We speculated that imatinib mesylate may reverse the pathological overproduction of red cells by inhibition of autonomous erythropoiesis. In the present study,imatinib mesylate was found to either block or strongly inhibit autonomous BFU-E formation in vitro in all patients tested. Moreover,autonomous BFU-E growth was also markedly reduced by exposure of PV cells to imatinib mesylate prior to cultivation in semisolid medium. The profound effect of imatinib mesylate on autonomous erythropoiesis suggests the involvement of an as yet unidentified kinase in the pathogenesis of PV and should provide the rationale for a forthcoming clinical trial.
View Publication
England SJ et al. (MAR 2011)
Blood 117 9 2708--17
Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus.
In the hematopoietic hierarchy,only stem cells are thought to be capable of long-term self-renewal. Erythroid progenitors derived from fetal or adult mammalian hematopoietic tissues are capable of short-term,or restricted (10(2)- to 10(5)-fold),ex vivo expansion in the presence of erythropoietin,stem cell factor,and dexamethasone. Here,we report that primary erythroid precursors derived from early mouse embryos are capable of extensive (10(6)- to 10(60)-fold) ex vivo proliferation. These cells morphologically,immunophenotypically,and functionally resemble proerythroblasts,maintaining both cytokine dependence and the potential,despite prolonged culture,to generate enucleated erythrocytes after 3-4 maturational cell divisions. This capacity for extensive erythroblast self-renewal is temporally associated with the emergence of definitive erythropoiesis in the yolk sac and its transition to the fetal liver. In contrast,hematopoietic stem cell-derived definitive erythropoiesis in the adult is associated almost exclusively with restricted ex vivo self-renewal. Primary primitive erythroid precursors,which lack significant expression of Kit and glucocorticoid receptors,lack ex vivo self-renewal capacity. Extensively self-renewing erythroblasts,despite their near complete maturity within the hematopoietic hierarchy,may ultimately serve as a renewable source of red cells for transfusion therapy.
View Publication