Sondergaard CS et al. (JAN 2010)
Journal of translational medicine 8 24
Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction.
UNLABELLED: Human stem cells from adult sources have been shown to contribute to the regeneration of muscle,liver,heart,and vasculature. The mechanisms by which this is accomplished are,however,still not well understood. We tested the engraftment and regenerative potential of human umbilical cord blood-derived ALDH(hi)Lin(-),and ALDH(lo)Lin(-) cells following transplantation to NOD/SCID or NOD/SCID beta2m null mice with experimentally induced acute myocardial infarction. We used combined nanoparticle labeling and whole organ fluorescent imaging to detect human cells in multiple organs 48 hours post transplantation. Engraftment and regenerative effects of cell treatment were assessed four weeks post transplantation. We found that ALDH(hi)Lin(-) stem cells specifically located to the site of injury 48 hours post transplantation and engrafted the infarcted heart at higher frequencies than ALDH(lo)Lin(-) committed progenitor cells four weeks post transplantation. We found no donor derived cardiomyocytes and few endothelial cells of donor origin. Cell treatment was not associated with any detectable functional improvement at the four week endpoint. There was,however,a significant increase in vascular density in the central infarct zone of ALDH(hi)Lin(-) cell-treated mice,as compared to PBS and ALDH(lo)Lin(-) cell-treated mice. CONCLUSIONS: Our data indicate that adult human stem cells do not become a significant part of the regenerating tissue,but rapidly home to and persist only temporarily at the site of hypoxic injury to exert trophic effects on tissue repair thereby enhancing vascular recovery.
View Publication
Cammett TJ et al. (FEB 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 8 3447--52
Construction and genetic selection of small transmembrane proteins that activate the human erythropoietin receptor.
This work describes a genetic approach to isolate small,artificial transmembrane (TM) proteins with biological activity. The bovine papillomavirus E5 protein is a dimeric,44-amino acid TM protein that transforms cells by specifically binding and activating the platelet-derived growth factor beta receptor (PDGFbetaR). We used the E5 protein as a scaffold to construct a retrovirus library expressing approximately 500,000 unique 44-amino acid proteins with randomized TM domains. We screened this library to select small,dimeric TM proteins that were structurally unrelated to erythropoietin (EPO),but specifically activated the human EPO receptor (hEPOR). These proteins did not activate the murine EPOR or the PDGFbetaR. Genetic studies with one of these activators suggested that it interacted with the TM domain of the hEPOR. Furthermore,this TM activator supported erythroid differentiation of primary human hematopoietic progenitor cells in vitro in the absence of EPO. Thus,we have changed the specificity of a protein so that it no longer recognizes its natural target but,instead,modulates an entirely different protein. This represents a novel strategy to isolate small artificial proteins that affect diverse membrane proteins. We suggest the word traptamer" for these transmembrane aptamers."
View Publication
Nakazawa G et al. (JAN 2010)
JACC. Cardiovascular interventions 3 1 68--75
Anti-CD34 antibodies immobilized on the surface of sirolimus-eluting stents enhance stent endothelialization.
OBJECTIVES: In this study,we hypothesized that an antihuman-CD34 antibody immobilized on the surface of commercially available sirolimus-eluting stents (SES) could enhance re-endothelialization compared with SES alone. BACKGROUND: Previous experience with antihuman-CD34 antibody surface modified Genous stents (GS) (OrbusNeich Medical,Fort Lauderdale,Florida) has shown enhanced stent endothelialization in vivo. METHODS: In the phase 1 study,stents were deployed in 21 pig coronary arteries for single stenting (9 vessels: 3 GS,3 SES,and 3 bare-metal stents) and overlapping stenting with various combinations (12 vessels: 4 GS+GS,4 SES+SES,and 4 GS+SES) and harvested at 14 days for scanning electron and confocal microscopy. In phase 2,immobilized anti-CD34 antibody coating was applied on commercially available SES (SES-anti-CD34,n = 7) and compared with GS (n = 8) and SES (n = 7) and examined at 3 and 14 days by scanning electron/confocal microscopy analysis. RESULTS: In phase 1,single stent implantation showed greatest endothelialization in GS (99%) and in bare-metal stent (99%) compared with SES (55%,p = 0.048). In overlapping stents,endothelialization at the overlapping zone was significantly greater in GS+GS (95 +/- 6%) and GS+SES (79 +/- 5%) compared with the SES+SES (36 +/- 14%) group (p = 0.007). In phase 2,SES-anti-CD34 resulted in increased endothelialization compared with SES alone at 3 days (SES-anti-CD34 36 +/- 26%; SES 7 +/- 3%; and GS 76 +/- 8%; p = 0.01),and 14 days (SES-anti-CD34 82 +/- 8%; SES 53 +/- 20%; and GS 98 +/- 2%; p = 0.009). CONCLUSIONS: Immobilization of anti-CD34 antibody on SES enhances endothelialization and may potentially be an effective therapeutic alternative to improve currently available drug-eluting stents.
View Publication
Puissant A et al. (FEB 2010)
Cancer research 70 3 1042--52
Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation.
Autophagy that is induced by starvation or cellular stress can enable cancer cell survival by sustaining energy homeostasis and eliminating damaged organelles and proteins. In response to stress,cancer cells have been reported to accumulate the protein p62/SQSTM1 (p62),but its role in the regulation of autophagy is controversial. Here,we report that the plant phytoalexin resveratrol (RSV) triggers autophagy in imatinib-sensitive and imatinib-resistant chronic myelogenous leukemia (CML) cells via JNK-dependent accumulation of p62. JNK inhibition or p62 knockdown prevented RSV-mediated autophagy and antileukemic effects. RSV also stimulated AMPK,thereby inhibiting the mTOR pathway. AMPK knockdown or mTOR overexpression impaired RSV-induced autophagy but not JNK activation. Lastly,p62 expression and autophagy in CD34+ progenitors from patients with CML was induced by RSV,and disrupting autophagy protected CD34+ CML cells from RSV-mediated cell death. We concluded that RSV triggered autophagic cell death in CML cells via both JNK-mediated p62 overexpression and AMPK activation. Our findings show that the JNK and AMPK pathways can cooperate to eliminate CML cells via autophagy.
View Publication
Twu Y-C et al. (MAR 2010)
Blood 115 12 2491--9
Phosphorylation status of transcription factor C/EBPalpha determines cell-surface poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis.
The cell-surface straight and branched repeats of N-acetyllactosamine (LacNAc) units,called poly-LacNAc chains,characterize the histo-blood group i and I antigens,respectively. The transition of straight to branched poly-LacNAc chain (i to I) is determined by the I locus,which expresses 3 IGnT transcripts,IGnTA,IGnTB,and IGnTC. Our previous investigation demonstrated that the i-to-I transition in erythroid differentiation is regulated by the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). In the present investigation,the K-562 cell line was used as a model to show that the i-to-I transition is determined by the phosphorylation status of the C/EBPalpha Ser-21 residue,with dephosphorylated C/EBPalpha Ser-21 stimulating the transcription of the IGnTC gene,consequently resulting in I branching. Results from studies using adult erythropoietic and granulopoietic progenitor cells agreed with those derived using the K-562 cell model,with lentiviral expression of C/EBPalpha in CD34(+) hematopoietic cells demonstrating that the dephosphorylated form of C/EBPalpha Ser-21 induced the expression of I antigen,granulocytic CD15,and also erythroid CD71 antigens. Taken together,these results demonstrate that the regulation of poly-LacNAc branching (I antigen) formation in erythropoiesis and granulopoiesis share a common mechanism,with dephosphorylation of the Ser-21 residue on C/EBPalpha playing the critical role.
View Publication
Kerns HM et al. (MAR 2010)
Blood 115 11 2146--55
B cell-specific lentiviral gene therapy leads to sustained B-cell functional recovery in a murine model of X-linked agammaglobulinemia.
The immunodeficiency disorder,X-linked agammaglobulinemia (XLA),results from mutations in the gene encoding Bruton tyrosine kinase (Btk). Btk is required for pre-B cell clonal expansion and B-cell antigen receptor signaling. XLA patients lack mature B cells and immunoglobulin and experience recurrent bacterial infections only partially mitigated by life-long antibody replacement therapy. In pursuit of definitive therapy for XLA,we tested ex vivo gene therapy using a lentiviral vector (LV) containing the immunoglobulin enhancer (Emu) and Igbeta (B29) minimal promoter to drive B lineage-specific human Btk expression in Btk/Tec(-/-) mice,a strain that reproduces the features of human XLA. After transplantation of EmuB29-Btk-LV-transduced stem cells,treated mice showed significant,albeit incomplete,rescue of mature B cells in the bone marrow,peripheral blood,spleen,and peritoneal cavity,and improved responses to T-independent and T-dependent antigens. LV-treated B cells exhibited enhanced B-cell antigen receptor signaling and an in vivo selective advantage in the peripheral versus central B-cell compartment. Secondary transplantation showed sustained Btk expression,viral integration,and partial functional responses,consistent with long-term stem cell marking; and serial transplantation revealed no evidence for cellular or systemic toxicity. These findings strongly support pursuit of B lineage-targeted LV gene therapy in human XLA.
View Publication
Gerrits A et al. (APR 2010)
Blood 115 13 2610--8
Cellular barcoding tool for clonal analysis in the hematopoietic system.
Clonal analysis is important for many areas of hematopoietic stem cell research,including in vitro cell expansion,gene therapy,and cancer progression and treatment. A common approach to measure clonality of retrovirally transduced cells is to perform integration site analysis using Southern blotting or polymerase chain reaction-based methods. Although these methods are useful in principle,they generally provide a low-resolution,biased,and incomplete assessment of clonality. To overcome those limitations,we labeled retroviral vectors with random sequence tags or barcodes." On integration�
View Publication
Sharma S et al. (MAR 2010)
Cytometry. Part B,Clinical cytometry 78 2 123--9
Electronic volume, aldehyde dehydrogenase, and stem cell marker expression in cells from human peripheral blood apheresis samples.
BACKGROUND: Over-expression of aldehyde dehydrogenase and other stem cell markers is characteristic of cells with tumorigenic potential in NOD/SCID mice. Most of these studies have focused on metastatic cells in bone marrow and on solid tumors. There are no studies on correlation of marker expression with ALDH1 expression in cells from human peripheral blood apheresis (HPC-A) samples. METHODS: HPC-A samples from 44 patients were incubated with Aldefluor with or without the presence of aldehyde dehydrogenase inhibitor DEAB. Cells with high aldehyde dehydrogenase expression (ALDH1(bright)) were analyzed for stem/progenitor markers CD34,CD90,CD117,and CD133. Electronic volume measured by Coulter principal in a Quanta flow analyzer was correlated with ALDH1 and marker expression. RESULTS: In ALDH1(bright)/SSC(low) cells,0.13% of the cells had CD34(+) expression and three distinct populations were seen. Expression of CD90 was dim and the frequency of ALDH1(bright)/SSC(low)/CD90(dim) cells amongst the nonlineage depleted samples was 0.04%. CD117(dim-bright) expression was seen in 0.17% of the samples. Three distinct populations of cells with CD133 expression were seen in ALDH1(bright)/SSC(low) nonlineage depleted cells with a frequency of 0.28%. The ALDH1(bright)/CD90(dim) cells had the smallest mean electronic volume of 264.9 microm(3) when compared with cells with CD34(bright) expression (270.2 microm(3)) and ALDH1(dim)/CD90(dim) cells (223 microm(3)). CONCLUSIONS: ALDH1(bright)/SSC(low) cells show heterogeneity in expression of the four stem cell markers studied. The CD90 cells in both the ALDH1(bright) and ALDH1(dim) populations had the smallest mean electronic volume when compared with similar cells with CD117 expression.
View Publication
Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity.
Hematopoietic stem cells (HSCs) are enriched for aldehyde dehydrogenase (ALDH) activity and ALDH is a selectable marker for human HSCs. However,the function of ALDH in HSC biology is not well understood. We sought to determine the function of ALDH in regulating HSC fate. Pharmacologic inhibition of ALDH with diethylaminobenzaldehyde (DEAB) impeded the differentiation of murine CD34(-)c-kit(+)Sca-1(+)lineage(-) (34(-)KSL) HSCs in culture and facilitated a ninefold expansion of cells capable of radioprotecting lethally irradiated mice compared to input 34(-)KSL cells. Treatment of bone marrow (BM) 34(-)KSL cells with DEAB caused a fourfold increase in 4-week competitive repopulating units,verifying the amplification of short-term HSCs (ST-HSCs) in response to ALDH inhibition. Targeted siRNA of ALDH1a1 in BM HSCs caused a comparable expansion of radioprotective progenitor cells in culture compared to DEAB treatment,confirming that ALDH1a1 was the target of DEAB inhibition. The addition of all trans retinoic acid blocked DEAB-mediated expansion of ST-HSCs in culture,suggesting that ALDH1a1 regulates HSC differentiation via augmentation of retinoid signaling. Pharmacologic inhibition of ALDH has therapeutic potential as a means to amplify ST-HSCs for transplantation purposes.
View Publication
Sun Y et al. (MAR 2010)
Blood 115 9 1709--17
Slug deficiency enhances self-renewal of hematopoietic stem cells during hematopoietic regeneration.
Both extrinsic and intrinsic mechanisms tightly govern hematopoietic stem cell (HSC) decisions of self-renewal and differentiation. However,transcription factors that can selectively regulate HSC self-renewal division after stress remain to be identified. Slug is an evolutionarily conserved zinc-finger transcription factor that is highly expressed in primitive hematopoietic cells and is critical for the radioprotection of these key cells. We studied the effect of Slug in the regulation of HSCs in Slug-deficient mice under normal and stress conditions using serial functional assays. Here,we show that Slug deficiency does not disturb hematopoiesis or alter HSC homeostasis and differentiation in bone marrow but increases the numbers of primitive hematopoietic cells in the extramedullary spleen site. Deletion of Slug enhances HSC repopulating potential but not its homing and differentiation ability. Furthermore,Slug deficiency increases HSC proliferation and repopulating potential in vivo after myelosuppression and accelerates HSC expansion during in vitro culture. Therefore,we propose that Slug is essential for controlling the transition of HSCs from relative quiescence under steady-state condition to rapid proliferation under stress conditions. Our data suggest that inhibition of Slug in HSCs may present a novel strategy for accelerating hematopoietic recovery,thus providing therapeutic benefits for patients after clinical myelosuppressive treatment.
View Publication
Takemura T et al. (FEB 2010)
The Journal of biological chemistry 285 9 6585--94
Reduction of Raf kinase inhibitor protein expression by Bcr-Abl contributes to chronic myelogenous leukemia proliferation.
Chronic myelogenous leukemia (CML) is characterized by a reciprocal chromosomal translocation (9;22) that generates the Bcr-Abl fusion gene. The Ras/Raf-1/MEK/ERK pathway is constitutively activated in Bcr-Abl-transformed cells,and Ras activity enhances the oncogenic ability of Bcr-Abl. However,the mechanism by which Bcr-Abl activates the Ras pathway is not completely understood. Raf kinase inhibitor protein (RKIP) inhibits activation of MEK by Raf-1 and its downstream signal transduction,resulting in blocking the MAP kinase pathway. In the present study,we found that RKIP was depleted in CML cells. We investigated the interaction between RKIP and Bcr-Abl in CML cell lines and Bcr-Abl(+) progenitor cells from CML patients. The Abl kinase inhibitors and depletion of Bcr-Abl induced the expression of RKIP and reduced the pERK1/2 status,resulting in inhibited proliferation of CML cells. Moreover,RKIP up-regulated cell cycle regulator FoxM1 expression,resulting in G(1) arrest via p27(Kip1) and p21(Cip1) accumulation. In colony-forming unit granulocyte,erythroid,macrophage,megakaryocyte,colony-forming unit-granulocyte macrophage,and burst-forming unit erythroid,treatment with the Abl kinase inhibitors and depletion of Bcr-Abl induced RKIP and reduced FoxM1 expressions,and inhibited colony formation of Bcr-Abl(+) progenitor cells,whereas depletion of RKIP weakened the inhibition of colony formation activity by the Abl kinase inhibitors in Bcr-Abl(+) progenitor cells. Thus,Bcr-Abl represses the expression of RKIP,continuously activates pERK1/2,and suppresses FoxM1 expression,resulting in proliferation of CML cells.
View Publication
Rovira M et al. (JAN 2010)
Proceedings of the National Academy of Sciences of the United States of America 107 1 75--80
Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas.
The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium,and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity,related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast,they are markedly enriched for transcripts encoding Sca1,Sdf1,c-Met,Nestin,and Sox9,markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing pancreatospheres" in suspension culture�
View Publication