Adherent cells generated during long-term culture of human umbilical cord blood CD34+ cells have characteristics of endothelial cells and beneficial effect on cord blood ex vivo expansion.
Hematopoiesis depends on the association of hematopoietic stem cells with stromal cells that constitute the hematopoietic microenvironment. The in vitro development of the endothelial cell from umbilical cord blood (UCB) is not well established and has met very limited success. In this study,UCB CD34(+) cells were cultured for 5 weeks in a stroma-free liquid culture system using thrombopoietin,flt3 ligand,and granulocyte-colony stimulating factor. By week 4-5,we found that firmly adherent fibroblast-like cells were established. These cells showed characteristics of endothelial cells expressing von Willebrand factor,human vascular cell adhesion molecule-1,human intracellular adhesion molecule-1,human CD31,E-selectin,and human macrophage. Furthermore,when comparing an ex vivo system without an established endothelial monolayer to an ex vivo system with an established endothelial monolayer,better expansion of total nucleated cells,CD34(+) cells,and colony-forming units (CFUs)-granulocyte-macrophage and CFUs-granulocyte-erythroid-megakaryocyte-macrophage were found during culture. This phenomenon was in part due to the fact that a significant reduction of apoptotic fractions was found in the CD34(+) cells,which were cultured on the adherent monolayer for up to 5 weeks. To gather quantitative data on the number of endothelial cells derived from a given number of CD34 cells,we performed limiting dilution assay by using Poisson distribution: the number of tested cells (linear scale) producing a 37% negative culture (logarithmic scale) is the number of cells containing one endothelial cell. By this method,one endothelial cell may be found from 314 CD34(+) cells after 5 weeks of culture. These results suggest that the UCB CD34(+) cell fraction contains endothelial cell precursors,establishing the hematopoietic microenvironment and providing the beneficial effects through downregulating apoptosis on UCB expansion protocols. These observations may provide insight for future cellular therapy or graft engineering.
View Publication
Wiedmer T et al. (SEP 2004)
Proceedings of the National Academy of Sciences of the United States of America 101 36 13296--301
Adiposity, dyslipidemia, and insulin resistance in mice with targeted deletion of phospholipid scramblase 3 (PLSCR3).
The phospholipid scramblases (PLSCR1 to PLSCR4) are a structurally and functionally unique class of proteins,which are products of a tetrad of genes conserved from Caenorhabditis elegans to humans. The best characterized member of this family,PLSCR1,is implicated in the remodeling of the transbilayer distribution of plasma membrane phospholipids but is also required for normal signaling through select growth factor receptors. Mice with targeted deletion of PLSCR1 display perinatal granulocytopenia due to defective response of hematopoietic precursors to granulocyte colony-stimulating factor and stem cell factor. To gain insight into the biologic function of another member of the PLSCR family,we investigated mice with targeted deletion of PLSCR3,a protein that like PLSCR1 is expressed in many blood cells but which,by contrast to PLSCR1,is also highly expressed in fat and muscle. PLSCR3(-/-) mice at 2 months of age displayed aberrant accumulation of abdominal fat when maintained on standard rodent chow,which was accompanied by insulin resistance,glucose intolerance,and dyslipidemia. Primary adipocytes and cultured bone-marrow-derived macrophages from PLSCR3(-/-) mice were engorged with neutral lipid,and adipocytes displayed defective responses to exogenous insulin. Plasma of PLSCR3(-/-) mice was elevated in non-high-density lipoproteins,cholesterol,triglycerides,nonesterified fatty acids,and leptin,whereas adiponectin was low. These data suggest that the expression of PLSCR3 may be required for normal adipocyte and/or macrophage maturation or function and raise the possibility that deletions or mutations affecting the PLSCR3(-/-) gene locus may contribute to the risk for lipid-related disorders in humans.
View Publication
Souroullas GP et al. (FEB 2009)
Cell stem cell 4 2 180--6
Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival.
Scl and Lyl1 encode two related basic-helix-loop-helix transcription factors implicated in T cell acute lymphoblastic leukemia. Previous studies showed that Scl is essential for embryonic and adult erythropoiesis,while Lyl1 is important for B cell development. Single-knockout mice have not revealed an essential function for Scl or Lyl1 in adult hematopoietic stem cells (HSCs). To determine if maintenance of HSCs in single-knockout mice is due to functional redundancy,we generated Lyl1;Scl-conditional double-knockout mice. Here,we report a striking genetic interaction between the two genes,with a clear dose dependence for the presence of Scl or Lyl1 alleles for HSC function. Bone marrow repopulation assays and analyses demonstrated rapid loss of hematopoietic progenitors due to apoptosis. The function of HSCs could be rescued by a single allele of Lyl1 but not Scl. These results show that expression of at least one of these factors is essential for maintenance of adult HSC function.
View Publication
Baksh D et al. (AUG 2003)
Experimental hematology 31 8 723--32
Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion.
OVERVIEW: We show the existence of adult human mesenchymal progenitor cells (hMPCs) that can proliferate,in a cytokine-dependent manner,as individual cells in stirred suspension cultures (SSC) while maintaining their ability to form functional differentiated mesenchymal cell types. MATERIALS AND METHODS: Ficolled human bone marrow (BM)-derived cells were grown in SSC (and adherent controls) in the presence and absence of exogenously added cytokines. Phenotypic,gene expression,and functional assays for hematopoietic and nonhematopoietic cell populations were used to kinetically track cell production. Limiting-dilution analysis was used to relate culture-produced cells to input cell populations. RESULTS: Cytokine cocktail influenced total and progenitor cell expansion,as well as the types of cells generated upon plating. Flow cytometric analysis of CD117,CD123,and CD45 expression showed that cytokine supplementation influenced SSC output. The concomitant growth of CD45(+) and CD45(-) cells in the cultures that exhibited the greatest hMPC expansions suggests that the growth of these cells may benefit from interactions with hematopoietic cells. Functional assays demonstrated that the SSC-derived cells (input CFU-O number: 1990+/-377) grown in the presence of SCF+IL-3 resulted,after 21 days,in the generation of a significantly greater number (ptextless0.05) of bone progenitors (33,700+/-8763 CFU-O) than similarly initiated adherent cultures (214+/-75 CFU-O). RT-PCR analysis confirmed that the SSC-derived cells grown in osteogenic conditions express bone-specific genes (Cbfa1/Runx2,bone sialoprotein,and osteocalcin). CONCLUSIONS: Our approach not only provides an alternative strategy to expand adult BM-derived nonhematopoietic progenitor cell numbers in a scalable and controllable bioprocess,but also questions established biological paradigms concerning the properties of connective-tissue stem and progenitor cells.
View Publication
Levi BP et al. (FEB 2009)
Blood 113 8 1670--80
Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems.
High levels of aldehyde dehydrogenase (ALDH) activity have been proposed to be a common feature of stem cells. Adult hematopoietic,neural,and cancer stem cells have all been reported to have high ALDH activity,detected using Aldefluor,a fluorogenic substrate for ALDH. This activity has been attributed to Aldh1a1,an enzyme that is expressed at high levels in stem cells and that has been suggested to regulate stem cell function. Nonetheless,Aldh1a1 function in stem cells has never been tested genetically. We observed that Aldh1a1 was preferentially expressed in mouse hematopoietic stem cells (HSCs) and expression increased with age. Hematopoietic cells from Aldh1a1-deficient mice exhibited increased sensitivity to cyclophosphamide in a non-cell-autonomous manner,consistent with its role in cyclophosphamide metabolism in the liver. However,Aldh1a1 deficiency did not affect hematopoiesis,HSC function,or the capacity to reconstitute irradiated recipients in young or old adult mice. Aldh1a1 deficiency also did not affect Aldefluor staining of hematopoietic cells. Finally,Aldh1a1 deficiency did not affect the function of stem cells from the adult central or peripheral nervous systems. Aldh1a1 is not a critical regulator of adult stem cell function or Aldefluor staining in mice.
View Publication
Povsic TJ et al. (OCT 2009)
Journal of thrombosis and thrombolysis 28 3 259--65
BACKGROUND: Interest in the biology of endogenous progenitor cells (EPCs) continues to grow as evidence of their role in vascular repair mounts. EPC enumeration requires specialized laboratory techniques and is performed immediately after sample acquisition,limiting the clinical contexts in which EPC enumeration can be performed and the ability to increase sample sizes through multi-center participation. METHODS: We compared the numbers of EPCs enumerated in samples processed immediately after acquisition (n = 36) with EPCs enumerated in specimens stored for 24 hours or after cryopreservation of mononuclear cells (MNC) using two EPC identification strategies: cell surface marker expression (CD133/CD34) and aldehyde dehydrogenase activity (ALDH(br) cells). RESULTS: EPCs assessed in fresh samples correlated with EPCs enumerated after whole blood storage (r = 0.699 for CD133(+)CD34(+) cells,r = 0.880 for ALDH(br) cells,P textless 0.005 and P textless 0.0001,respectively) or mononuclear cryopreservation (r = 0.590 for CD133(+)CD34(+) cells,r = 0.894 for ALDH(br) cells,P textless 0.0001 for each); however,correlation based on assessment of ALDH(br) cells was higher (P textless 0.0003 for comparison of correlation coefficients). Initial results from a multi-site clinical trial suggest that EPC enumeration after mononuclear cell cryopreservation is feasible. CONCLUSION: EPC analysis based on ALDH activity is reproducible,even after extended whole blood storage or MNC cryopreservation.
View Publication
Lioznov MV et al. (MAY 2005)
Bone marrow transplantation 35 9 909--14
Aldehyde dehydrogenase activity as a marker for the quality of hematopoietic stem cell transplants.
Taking advantage of fluorescent substrates for their metabolic marker aldehyde dehydrogenase (ALDH),hematopoietic stem cells (HSC) were defined as SSC(lo)ALDH(br) - reflecting their low orthogonal light scattering and bright fluorescence intensity in flow cytometry. Based thereon,we investigated the usefulness of ALDH activity for characterizing HSC graft quality,particularly under stress conditions. We first compared the expression of ALDH vs CD34 in bone marrow and peripheral blood stem cell (PBSC) samples over 7 days. We noted that (i) only ALDH activity but not CD34 expression strongly reflected colony-forming ability over time,and that (ii) PBSC grafts stored at room temperature lost most of their progenitor cells within just 48 h. We then retrospectively related ALDH and CD34 expression as well as granulocyte-macrophage colony-forming units (CFU-GM) potential for 19 cryopreserved allogeneic PBSC grafts to engraftment data. Strikingly,in all six patients who received markedly decreased numbers of SSC(lo)ALDH(br) cells,this was associated not only with almost complete loss of CFU-GM potential but also with delayed establishment/permanent absence of full hematopoietic donor cell chimerism,whereas all other patients showed early complete donor chimerism. In conclusion,we suggest to measure ALDH activity as a surrogate marker for HSC activity,and to transport and store PBSC under controlled cooling conditions.
View Publication
Vauchez K et al. (NOV 2009)
Molecular therapy : the journal of the American Society of Gene Therapy 17 11 1948--58
Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities.
Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM),umbilical cord blood (UCB),and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study,we have identified ALDH(+) cells within human skeletal muscles,and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH,Aldefluor,identified brightly stained (ALDH(br)) cells with low side scatter (SSC(lo)),in enzymatically dissociated muscle biopsies,thereafter abbreviated as SMALD(+) (for skeletal muscle ALDH(+)) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD(+)/CD34(-) and SMALD(+)/CD34(+) cells. These sub-populations did not initially express endothelial (CD31),hematopoietic (CD45),and myogenic (CD56) markers. Upon sorting,however,whereas SMALD(+)/CD34(+) cells developed in vitro as a heterogeneous population of CD56(-) cells able to differentiate in adipoblasts,the SMALD(+)/CD34(-) fraction developed in vitro as a highly enriched population of CD56(+) myoblasts able to form myotubes. Moreover,only the SMALD(+)/CD34(-) population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy.
View Publication
Jean E et al. (JAN 2011)
Journal of cellular and molecular medicine 15 1 119--33
Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells.
Aldehyde dehydrogenases (ALDH) are a family of enzymes that efficiently detoxify aldehydic products generated by reactive oxygen species and might therefore participate in cell survival. Because ALDH activity has been used to identify normal and malignant cells with stem cell properties,we asked whether human myogenic precursor cells (myoblasts) could be identified and isolated based on their levels of ALDH activity. Human muscle explant-derived cells were incubated with ALDEFLUOR,a fluorescent substrate for ALDH,and we determined by flow cytometry the level of enzyme activity. We found that ALDH activity positively correlated with the myoblast-CD56(+) fraction in those cells,but,we also observed heterogeneity of ALDH activity levels within CD56-purified myoblasts. Using lentiviral mediated expression of shRNA we demonstrated that ALDH activity was associated with expression of Aldh1a1 protein. Surprisingly,ALDH activity and Aldh1a1 expression levels were very low in mouse,rat,rabbit and non-human primate myoblasts. Using different approaches,from pharmacological inhibition of ALDH activity by diethylaminobenzaldehyde,an inhibitor of class I ALDH,to cell fractionation by flow cytometry using the ALDEFLUOR assay,we characterized human myoblasts expressing low or high levels of ALDH. We correlated high ALDH activity ex vivo to resistance to hydrogen peroxide (H(2) O(2) )-induced cytotoxic effect and in vivo to improved cell viability when human myoblasts were transplanted into host muscle of immune deficient scid mice. Therefore detection of ALDH activity,as a purification strategy,could allow non-toxic and efficient isolation of a fraction of human myoblasts resistant to cytotoxic damage.
View Publication
Marcato P et al. (MAY 2011)
Cell cycle (Georgetown,Tex.) 10 9 1378--84
Aldehyde dehydrogenase: its role as a cancer stem cell marker comes down to the specific isoform.
Recent evidence suggests that enhanced aldehyde dehydrogenase (ALDH) activity is a hallmark of cancer stem cells (CSC) measurable by the aldefluor assay. ALDH1A1,one of 19 ALDH isoforms expressed in humans,was generally believed to be responsible for the ALDH activity of CSCs. More recently,experiments with murine hematopoietic stem cells,murine progenitor pancreatic cells,and human breast CSCs indicate that other ALDH isoforms,particularly ALDH1A3,significantly contribute to aldefluor positivity,which may be tissue and cancer specific. Therefore,potential prognostic application involving the use of CSC prevalence in tumor tissue to predict patient outcome requires the identification and quantification of specific ALDH isoforms. Herein we review the suggested roles of ALDH in CSC biology and the immunohistological studies testing the potential application of ALDH isoforms as novel cancer prognostic indicators.
View Publication
Zhao H et al. (JUN 2009)
Blood 113 23 5747--56
Amelioration of murine beta-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both gamma-globin and the MGMT drug-resistance gene.
Correction of murine models of beta-thalassemia has been achieved through high-level globin lentiviral vector gene transfer into mouse hematopoietic stem cells (HSCs). However,transduction of human HSCs is less robust and may be inadequate to achieve therapeutic levels of genetically modified erythroid cells. We therefore developed a double gene lentiviral vector encoding both human gamma-globin under the transcriptional control of erythroid regulatory elements and methylguanine methyltransferase (MGMT),driven by a constitutive cellular promoter. MGMT expression provides cellular resistance to alkylator drugs,which can be administered to kill residual untransduced,diseased HSCs,whereas transduced cells are protected. Mice transplanted with beta-thalassemic HSCs transduced with a gamma-globin/MGMT vector initially had subtherapeutic levels of red cells expressing gamma-globin. To enrich gamma-globin-expressing cells,transplanted mice were treated with the alkylator agent 1,3-bis-chloroethyl-1-nitrosourea. This resulted in significant increases in the number of gamma-globin-expressing red cells and the amount of fetal hemoglobin,leading to resolution of anemia. Selection of transduced HSCs was also obtained when cells were drug-treated before transplantation. Mice that received these cells demonstrated reconstitution with therapeutic levels of gamma-globin-expressing cells. These data suggest that MGMT-based drug selection holds promise as a modality to improve gene therapy for beta-thalassemia.
View Publication
Zhang Y et al. (JUN 2013)
Blood 121 24 4906--16
AML1-ETO mediates hematopoietic self-renewal and leukemogenesis through a COX/β-catenin signaling pathway.
Developing novel therapies that suppress self-renewal of leukemia stem cells may reduce the likelihood of relapses and extend long-term survival of patients with acute myelogenous leukemia (AML). AML1-ETO (AE) is an oncogene that plays an important role in inducing self-renewal of hematopoietic stem/progenitor cells (HSPCs),leading to the development of leukemia stem cells. Previously,using a zebrafish model of AE and a whole-organism chemical suppressor screen,we have discovered that AE induces specific hematopoietic phenotypes in embryonic zebrafish through a cyclooxygenase (COX)-2 and β-catenin-dependent pathway. Here,we show that AE also induces expression of the Cox-2 gene and activates β-catenin in mouse bone marrow cells. Inhibition of COX suppresses β-catenin activation and serial replating of AE(+) mouse HSPCs. Genetic knockdown of β-catenin also abrogates the clonogenic growth of AE(+) mouse HSPCs and human leukemia cells. In addition,treatment with nimesulide,a COX-2 selective inhibitor,dramatically suppresses xenograft tumor formation and inhibits in vivo progression of human leukemia cells. In summary,our data indicate an important role of a COX/β-catenin-dependent signaling pathway in tumor initiation,growth,and self-renewal,and in providing the rationale for testing potential benefits from common COX inhibitors as a part of AML treatments.
View Publication