Zhang H et al. (NOV 2005)
American journal of physiology. Heart and circulatory physiology 289 5 H2089--96
Increasing donor age adversely impacts beneficial effects of bone marrow but not smooth muscle myocardial cell therapy.
We evaluated the impact of donor age on the efficacy of myocardial cellular therapy for ischemic cardiomyopathy. Characteristics of smooth muscle cells (SMC),bone marrow stromal cells (MSCs),and skeletal muscle cells (SKMCs) from young,adult,and old rats were compared in vitro. Three weeks after coronary ligation,3.5 million SMCs (n = 11) or MSCs (n = 9) from old syngenic rats or culture medium (n = 6) were injected into the ischemic region. Five weeks after implantation,cardiac function was assessed by echocardiography and the Langendorff apparatus. In the in vitro study,the numbers and proliferation of MSCs from fresh bone marrow and SKMCs from fresh tissue but not SMCs were markedly diminished in old animals (P textless 0.05 both groups). SKMCs from old animals did not reach confluence. After treatment with 5-azacytidine (azacitidine),the myogenic potential of old MSCs was decreased compared with young MSCs. In the in vivo study,both SMC and MSC transplantation induced significant angiogenesis compared with media injections (P textless 0.05 both groups). Transplantation of SMCs but not MSCs prevented scar thinning (P = 0.03) and improved ejection fraction and fractional shortening (P textless 0.05). Load-independent indices of cardiac function in a Langendorff preparation confirmed improved function in the aged SMC group (P = 0.01) but not in the MSC group compared with the control group. In conclusion,donor age adversely impacts the efficacy of cellular therapy for myocardial regeneration and is cell-type dependent. SMCs from old donors retain their ability to improve cardiac function after implantation into ischemic myocardium.
View Publication
Yalcintepe L et al. (NOV 2006)
Blood 108 10 3530--7
Expression of interleukin-3 receptor subunits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice.
The interleukin-3 receptor (IL-3R) subunits are overexpressed on acute myeloid leukemia (AML) blasts compared with normal hematopoietic cells and are thus potential targets for novel therapeutic agents. Both fluorescence-activated cell sorter (FACS) analysis and quantitative real-time reverse transcription-polymerase chain reaction (QRT-PCR) were used to quantify expression of the IL-3Ralpha and beta(c) subunits on AML cells. QRT-PCR for both subunits was most predictive of killing of AML colony-forming cells (AML-CFCs) by diphtheria toxin-IL-3 fusion protein (DT(388)IL3). Among 19 patient samples,the relative level of the IL-3Ralpha was higher than the IL-3Rbeta(c) and highest in CD34(+)CD38(-)CD71(-) cells,enriched for candidate leukemia stem cells,compared with cell fractions depleted of such progenitors. Overall,the amount of IL-3Rbeta(c) subunit did not vary among sorted subpopulations. However,expression of both subunits varied by more than 10-fold among different AML samples for all subpopulations studied. The level of IL-3Rbeta(c) expression versus glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (set at 1000) ranged from 0.14 to 13.56 in CD34(+)CD38(-)CD71(-) cells from different samples; this value was correlated (r = .76,P = .05) with the ability of DT(388)IL3 to kill AML progenitors that engraft in beta(2)-microglobin-deficient nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice (n = 7). Thus,quantification of IL-3R subunit expression on AML blasts predicts the effectiveness IL-3R-targeted therapy in killing primitive leukemic progenitors.
View Publication
Pevsner-Fischer M et al. (FEB 2007)
Blood 109 4 1422--32
Toll-like receptors and their ligands control mesenchymal stem cell functions.
Mesenchymal stem cells (MSCs) are widespread in adult organisms and may be involved in tissue maintenance and repair as well as in the regulation of hematopoiesis and immunologic responses. Thus,it is important to discover the factors controlling MSC renewal and differentiation. Here we report that adult MSCs express functional Toll-like receptors (TLRs),confirmed by the responses of MSCs to TLR ligands. Pam3Cys,a prototypic TLR-2 ligand,augmented interleukin-6 secretion by MSC,induced nuclear factor kappa B (NF-kappaB) translocation,reduced MSC basal motility,and increased MSC proliferation. The hallmark of MSC function is the capacity to differentiate into several mesodermal lineages. We show herein that Pam3Cys inhibited MSC differentiation into osteogenic,adipogenic,and chondrogenic cells while sparing their immunosuppressive effect. Our study therefore shows that a TLR ligand can antagonize MSC differentiation triggered by exogenous mediators and consequently maintains the cells in an undifferentiated and proliferating state in vitro. Moreover,MSCs derived from myeloid factor 88 (MyD88)-deficient mice lacked the capacity to differentiate effectively into osteogenic and chondrogenic cells. It appears that TLRs and their ligands can serve as regulators of MSC proliferation and differentiation and might affect the maintenance of MSC multipotency.
View Publication
Boomsma RA et al. (OCT 2007)
International journal of cardiology 122 1 17--28
Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size.
BACKGROUND: The purpose of this study was to determine whether murine mesenchymal stem cells (MSC) are able to home to the viable myocardium when injected intravenously and attenuate cardiac dysfunction and ventricular remodeling associated with myocardial infarction. METHODS AND RESULTS: Murine bone marrow cells were negatively selected for lineage markers and adherent MSC differentiated into adipocytes and osteocytes following treatment in culture. Two weeks after coronary occlusion that resulted in a permanent transmural infarct we observed a significant drop in LV systolic pressure,dP/dt(max),dP/dt(min),ESPVR and E(max) and a significant increase in end-diastolic volume in vivo. Femoral vein injection of MSC 1 h after occlusion attenuated the cardiac dysfunction without altering infarct size,or end-diastolic volume. Injected MSC pre-labeled with fluorescent paramagnetic microspheres were observed scattered in noninfarcted regions of the myocardium. Flow cytometry of whole heart digests after intravenous injection of MSC labeled with either fluorescent microspheres or fluorescent PKH26 dye demonstrated that infarcted hearts from mice that received MSC injections contained significantly more cells that integrated into the heart (20x) than those from uninfarcted controls. CONCLUSION: We conclude that intravenously injected MSC were able to home to viable myocardium and preserve systolic function by 2 weeks following ligation. The preserved contractility is likely an MSC-mediated paracrine response since infarct morphology was unchanged and labeled cells observed at two weeks exhibited the same characteristics as the injected MSC. These data underscore the importance of using MSC as a potential therapeutic intervention in preserving cardiac function following infarction.
View Publication
Battula VL et al. (APR 2007)
Differentiation; research in biological diversity 75 4 279--91
Human placenta and bone marrow derived MSC cultured in serum-free, b-FGF-containing medium express cell surface frizzled-9 and SSEA-4 and give rise to multilineage differentiation.
Conventionally,mesenchymal stem cells (MSC) are generated by plating cells from bone marrow (BM) or other sources into culture flasks and selecting plastic-adherent cells with fibroblastoid morphology. These cells express CD9,CD10,CD13,CD73,CD105,CD166,and other markers but show only a weak or no expression of the embryonic markers stage-specific embryonic antigen-4 (SSEA-4),Oct-4 and nanog-3. Using a novel protocol we prepared MSC from BM and non-amniotic placenta (PL) by culture of Ficoll-selected cells in gelatin-coated flasks in the presence of a serum-free,basic fibroblast growth factor (b-FGF)-containing medium that was originally designed for the expansion of human embryonic stem cells (ESC). MSC generated in gelatin-coated flasks in the presence of ESC medium revealed a four-to fivefold higher proliferation rate than conventionally prepared MSC which were grown in uncoated flasks in serum-containing medium. In contrast,the colony forming unit fibroblast number was only 1.5- to twofold increased in PL-MSC and not affected in BM-MSC. PL-MSC grown in ESC medium showed an increased surface expression of SSEA-4 and frizzled-9 (FZD-9),an increased Oct-4 and nestin mRNA expression,and an induced expression of nanog-3. BM-MSC showed an induced expression of FZD-9,nanog-3,and Oct-4. In contrast to PL-MSC,only BM-MSC expressed the MSC-specific W8B2 antigen. When cultured under appropriate conditions,these MSC gave rise to functional adipocytes and osteoblast-like cells (mesoderm),glucagon and insulin expressing pancreatic-like cells (endoderm),as well as cells expressing the neuronal markers neuron-specific enolase,glutamic acid decarboxylase-67 (GAD),or class III beta-tubulin,and the astrocyte marker glial fibrillary acidic protein (ectoderm). In conclusion,using a novel protocol we demonstrate that adult BM-and neonatal PL-derived MSC can be induced to express high levels of FZD-9,Oct-4,nanog-3,and nestin and are able of multi-lineage differentiation.
View Publication
Pereira LE et al. (MAY 2007)
Journal of virology 81 9 4445--56
Simian immunodeficiency virus (SIV) infection influences the level and function of regulatory T cells in SIV-infected rhesus macaques but not SIV-infected sooty mangabeys.
Differences in clinical outcome of simian immunodeficiency virus (SIV) infection in disease-resistant African sooty mangabeys (SM) and disease-susceptible Asian rhesus macaques (RM) prompted us to examine the role of regulatory T cells (Tregs) in these two animal models. Results from a cross-sectional study revealed maintenance of the frequency and absolute number of peripheral Tregs in chronically SIV-infected SM while a significant loss occurred in chronically SIV-infected RM compared to uninfected animals. A longitudinal study of experimentally SIV-infected animals revealed a transient increase in the frequency of Tregs from baseline values following acute infection in RM,but no change in the frequency of Tregs occurred in SM during this period. Further examination revealed a strong correlation between plasma viral load (VL) and the level of Tregs in SIV-infected RM but not SM. A correlation was also noted in SIV-infected RM that control VL spontaneously or in response to antiretroviral chemotherapy. In addition,immunofluorescent cell count assays showed that while Treg-depleted peripheral blood mononuclear cells from RM led to a significant enhancement of CD4+ and CD8+ T-cell responses to select pools of SIV peptides,there was no detectable T-cell response to the same pool of SIV peptides in Treg-depleted cells from SIV-infected SM. Our data collectively suggest that while Tregs do appear to play a role in the control of viremia and the magnitude of the SIV-specific immune response in RM,their role in disease resistance in SM remains unclear.
View Publication
Li Y et al. (MAR 2009)
Blood 113 10 2342--51
Mesenchymal stem/progenitor cells promote the reconstitution of exogenous hematopoietic stem cells in Fancg-/- mice in vivo.
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow failure and complex congenital anomalies. Although mutations in FA genes result in a characteristic phenotype in the hematopoietic stem/progenitor cells (HSPCs),little is known about the consequences of a nonfunctional FA pathway in other stem/progenitor cell compartments. Given the intense functional interactions between HSPCs and the mesenchymal microenvironment,we investigated the FA pathway on the cellular functions of murine mesenchymal stem/progenitor cells (MSPCs) and their interactions with HSPCs in vitro and in vivo. Here,we show that loss of the murine homologue of FANCG (Fancg) results in a defect in MSPC proliferation and in their ability to support the adhesion and engraftment of murine syngeneic HSPCs in vitro or in vivo. Transplantation of wild-type (WT) but not Fancg(-/-) MSPCs into the tibiae of Fancg(-/-) recipient mice enhances the HSPC engraftment kinetics,the BM cellularity,and the number of progenitors per tibia of WT HSPCs injected into lethally irradiated Fancg(-/-) recipients. Collectively,these data show that FA proteins are required in the BM microenvironment to maintain normal hematopoiesis and provide genetic and quantitative evidence that adoptive transfer of WT MSPCs enhances hematopoietic stem cell engraftment.
View Publication
Romieu-Mourez R et al. (JUN 2009)
Journal of immunology (Baltimore,Md. : 1950) 182 12 7963--73
Cytokine modulation of TLR expression and activation in mesenchymal stromal cells leads to a proinflammatory phenotype.
Bone marrow-derived mesenchymal stromal cells (MSC) possess an immune plasticity manifested by either an immunosuppressive or,when activated with IFN-gamma,an APC phenotype. Herein,TLR expression by MSC and their immune regulatory role were investigated. We observed that human MSC and macrophages expressed TLR3 and TLR4 at comparable levels and TLR-mediated activation of MSC resulted in the production of inflammatory mediators such as IL-1beta,IL-6,IL-8/CXCL8,and CCL5. IFN-alpha or IFN-gamma priming up-regulated production of these inflammatory mediators and expression of IFNB,inducible NO synthase (iNOS),and TRAIL upon TLR activation in MSC and macrophages,but failed to induce IL-12 and TNF-alpha production in MSC. Nonetheless,TLR activation in MSC resulted in the formation of an inflammatory site attracting innate immune cells,as evaluated by human neutrophil chemotaxis assays and by the analysis of immune effectors retrieved from Matrigel-embedded MSC injected into mice after in vitro preactivation with cytokines and/or TLR ligands. Hence,TLR-activated MSC are capable of recruiting immune inflammatory cells. In addition,IFN priming combined with TLR activation may increase immune responses induced by Ag-presenting MSC through presentation of Ag in an inflammatory context,a mechanism that could be applied in a cell-based vaccine.
View Publication
Schumann P et al. (SEP 2009)
Microvascular research 78 2 180--90
Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo.
Implantation of tissue engineering constructs is a promising technique to reconstruct injured tissue. However,after implantation the nutrition of the constructs is predominantly restricted to vascularization. Since cells possess distinct angiogenic potency,we herein assessed whether scaffold vitalization with different cell types improves scaffold vascularization. 32 male balb/c mice received a dorsal skinfold chamber. Angiogenesis,microhemodynamics,leukocyte-endothelial cell interaction and microvascular permeability induced in the host tissue after implantation of either collagen coated poly (L-lactide-co-glycolide) (PLGA) scaffolds (group 4),additionally seeded with osteoblast-like cells (OLCs,group 1),bone marrow mesenchymal stem cells (bmMSCs,group 2) or a combination of OLCs and bmMSCs (group 3) were analyzed repetitively over 14 days using intravital fluorescence microscopy. Apart from a weak inflammatory response in all groups,vascularization was found distinctly accelerated in vitalized scaffolds,indicated by a significantly increased microvascular density (day 6,group 1: 202+/-15 cm/cm(2),group 2: 202+/-12 cm/cm(2),group 3: 194+/-8 cm/cm(2)),when compared with controls (group 4: 72+/-5 cm/cm(2)). This acceleration was independent from the seeded cell type. Immunohistochemistry revealed in vivo VEGF expression in close vicinity to the seeded OLCs and bmMSCs. Therefore,the observed lack of cell type confined differences in the vascularization process suggests that the accelerated vascularization of vitalized scaffolds is VEGF-related rather than dependent on the potential of bmMSCs to differentiate into specific vascular cells.
View Publication
Armesilla-Diaz A et al. (DEC 2009)
Experimental cell research 315 20 3598--610
p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells.
Mesenchymal stem cells (MSC) have been extensively studied and gained wide popularity due to their therapeutic potential. Spontaneous transformation of MSC,from both human and murine origin,has been reported in many studies. MSC transformation depends on the culture conditions,the origin of the cells and the time on culture; however,the precise biological characteristics involved in this process have not been fully defined yet. In this study,we investigated the role of p53 in the biology and transformation of murine bone marrow (BM)-derived MSC. We demonstrate that the MSC derived from p53KO mice showed an augmented proliferation rate,a shorter doubling time and also morphologic and phenotypic changes,as compared to MSC derived from wild-type animals. Furthermore,the MSC devoid of p53 had an increased number of cells able to generate colonies. In addition,not only proliferation but also MSC differentiation is controlled by p53 since its absence modifies the speed of the process. Moreover,genomic instability,changes in the expression of c-myc and anchorage independent growth were also observed in p53KO MSC. In addition,the absence of p53 implicates the spontaneous transformation of MSC in long-term cultures. Our results reveal that p53 plays a central role in the biology of MSC.
View Publication
Enhanced chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells in low oxygen environment micropellet cultures.
Chondrogenesis of mesenchymal stem cells (MSCs) is typically induced when they are condensed into a single aggregate and exposed to transforming growth factor-beta (TGF-beta). Hypoxia,like aggregation and TGF-beta delivery,may be crucial for complete chondrogenesis. However,the pellet dimensions and associated self-induced oxygen gradients of current chondrogenic methods may limit the effectiveness of in vitro differentiation and subsequent therapeutic uses. Here we describe the use of embryoid body-forming technology to produce microscopic aggregates of human bone marrow MSCs (BM-MSCs) for chondrogenesis. The use of micropellets reduces the formation of gradients within the aggregates,resulting in a more homogeneous and controlled microenvironment. These micropellet cultures (approximately 170 cells/micropellet) as well as conventional pellet cultures (approximately 2 x 10(5) cells/pellet) were chondrogenically induced under 20% and 2% oxygen environments for 14 days. Compared to conventional pellets under both environments,micropellets differentiated under 2% O(2) showed significantly increased sulfated glycosaminoglycan (sGAG) production and more homogeneous distribution of proteoglycans and collagen II. Aggrecan and collagen II gene expressions were increased in pellet cultures differentiated under 2% O(2) relative to 20% O(2) pellets but 2% O(2) micropellets showed even greater increases in these genes,as well as increased SOX9. These results suggest a more advanced stage of chondrogenesis in the micropellets accompanied by more homogeneous differentiation. Thus,we present a new method for enhancing MSC chondrogenesis that reveals a unique relationship between oxygen tension and aggregate size. The inherent advantages of chondrogenic micropellets over a single macroscopic aggregate should allow for easy integration with a variety of cartilage engineering strategies.
View Publication
Valencic E et al. (APR 2010)
Cytotherapy 12 2 154--60
The immunosuppressive effect of Wharton's jelly stromal cells depends on the timing of their licensing and on lymphocyte activation.
BACKGROUND: Mesenchymal stromal cells (MSC) have been proven to have potent immunosuppressive action and hence have been proposed for the treatment of severe Graft Versus Host Disease. However,in most models,MSC were added at the same time of lymphocyte stimulation,which is quite different from what occurs in vivo. AIMS: To investigate how the timing of lymphocyte activation and the exposure to activation-related cytokines (licensing) can influence the immunosuppressive action of Wharton's jelly stromal cells (WJSC). METHODS: WJSC,licensed or not with activation-related cytokines,were added lymphocytes the same time or 24 hours after their stimulation with phytohaemoagglutinin. Proliferation of lymphocytes and cytokines production was measured after three days co-culture. RESULTS: Lymphocytes stimulated in the presence of WJSC displayed a dramatic decrease in proliferation and production of cytokines,in spite of normal expression of activation markers. The suppression was weakened when targeted lymphocytes were seperated by a membrane and partially rescued by the addition of exogenous l-tryptophan,suggesting a major role for indoleamine 2,3-dioxigenase with a probable paracrine effect. Licensing of WJSC increased the immunosuppressive effect,in both contact and non-contact settings. The timing of WJSC licensing was crucial for the immunosuppressive action. Lymphocytes pre-stimulated alone for 24 h,and added afterwards to non-licensed WJSC,showed normal or even increased proliferation. On the other hand,their proliferation was strongly inhibited by licensed WJSC. CONCLUSIONS: WJSC have a potent immunosuppressive function best realized with direct contact,and increased by licensing signals before and during lymphocyte stimulation. Our results could contribute to the set up of new WJSC-based therapies for severe autoimmuno disorders.
View Publication