Ankam S et al. (JAN 2013)
Acta Biomaterialia 9 1 4535--45
Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage
Efficient derivation of neural cells from human embryonic stem cells (hESCs) remains an unmet need for the treatment of neurological disorders. The limiting factors for current methods include being labor-intensive,time-consuming and expensive. In this study,we hypothesize that the substrate topography,with optimal geometry and dimension,can modulate the neural fate of hESCs and enhance the efficiency of differentiation. A multi-architectural chip (MARC) containing fields of topographies varying in geometry and dimension was developed to facilitate high-throughput analysis of topography-induced neural differentiation in vitro. The hESCs were subjected to direct differentiation"�
View Publication
Reference
Padmanabhan R et al. (OCT 2012)
Stem cells (Dayton,Ohio) 30 10 N/A--N/A
Regulation and expression of the ATP-binding cassette transporter ABCG2 in human embryonic stem cells.
The expression and function of several multidrug transporters (including ABCB1 and ABCG2) have been studied in human cancer cells and in mouse and human adult stem cells. However,the expression of ABCG2 in human embryonic stem cells (hESCs) remains unclear. Limited and contradictory results in the literature from two research groups have raised questions regarding its expression and function. In this study,we used quantitative real-time PCR,Northern blots,whole genome RNA sequencing,Western blots,and immunofluorescence microscopy to study ABCG2 expression in hESCs. We found that full-length ABCG2 mRNA transcripts are expressed in undifferentiated hESC lines. However,ABCG2 protein was undetectable even under embryoid body differentiation or cytotoxic drug induction. Moreover,surface ABCG2 protein was coexpressed with the differentiation marker stage-specific embryonic antigen-1 of hESCs,following constant BMP-4 signaling at days 4 and 6. This expression was tightly correlated with the downregulation of two microRNAs (miRNAs) (i.e.,hsa-miR-519c and hsa-miR-520h). Transfection of miRNA mimics and inhibitors of these two miRNAs confirmed their direct involvement in the regulation ABCG2 translation. Our findings clarify the controversy regarding the expression of the ABCG2 gene and also provide new insights into translational control of the expression of membrane transporter mRNAs by miRNAs in hESCs.
View Publication
Reference
Balakrishnan SK et al. (AUG 2012)
PLoS ONE 7 8 e42424
Functional and molecular characterization of the role of CTCF in human embryonic stem cell biology.
The CCCTC-binding factor CTCF is the only known vertebrate insulator protein and has been shown to regulate important developmental processes such as imprinting,X-chromosome inactivation and genomic architecture. In this study,we examined the role of CTCF in human embryonic stem cell (hESC) biology. We demonstrate that CTCF associates with several important pluripotency genes,including NANOG,SOX2,cMYC and LIN28 and is critical for hESC proliferation. CTCF depletion impacts expression of pluripotency genes and accelerates loss of pluripotency upon BMP4 induced differentiation,but does not result in spontaneous differentiation. We find that CTCF associates with the distal ends and internal sites of the co-regulated 160 kb NANOG-DPPA3-GDF3 locus. Each of these sites can function as a CTCF-dependent enhancer-blocking insulator in heterologous assays. In hESCs,CTCF exists in multisubunit protein complexes and can be poly(ADP)ribosylated. Known CTCF cofactors,such as Cohesin,differentially co-localize in the vicinity of specific CTCF binding sites within the NANOG locus. Importantly,the association of some cofactors and protein PARlation selectively changes upon differentiation although CTCF binding remains constant. Understanding how unique cofactors may impart specialized functions to CTCF at specific genomic locations will further illuminate its role in stem cell biology.
View Publication
Reference
Ermakov A et al. (NOV 2012)
Stem Cell Research 9 3 171--184
A role for intracellular calcium downstream of G-protein signaling in undifferentiated human embryonic stem cell culture
Multiple signalling pathways maintain human embryonic stem cells (hESC) in an undifferentiated state. Here we sought to define the significance of G protein signal transduction in the preservation of this state distinct from other cellular processes. Continuous treatment with drugs targeting G(αs)-,G(α-i/o)- and G(α-q/11)-subunit signalling mediators were assessed in independent hESC lines after 7days to discern effects on normalised alkaline phosphatase positive colony frequency vs total cell content. This identified PLCβ,intracellular free calcium and CAMKII kinase activity downstream of G(α-q/11) as of particular importance to the former. To confirm the significance of this finding we generated an agonist-responsive hESC line transgenic for a G(α-q/11) subunit-coupled receptor and demonstrated that an undifferentiated state could be promoted in the presence of an agonist without exogenously supplied bFGF and that this correlated with elevated intracellular calcium. Similarly,treatment of unmodified hESCs with a range of intracellular free calcium-modulating drugs in biologically defined mTESR culture system lacking exogenous bFGF promoted an hESC phenotype after 1week of continuous culture as defined by co-expression of OCT4 and NANOG. At least one of these drugs,lysophosphatidic acid significantly elevates phosphorylation of calmodulin and STAT3 in this culture system (ptextless0.05). These findings substantiate a role for G-protein and calcium signalling in undifferentiated hESC culture.
View Publication
Reference
Yu F-X et al. (AUG 2012)
Cell 150 4 780--791
Regulation of the Hippo-YAP pathway by G-protein-coupled receptor signaling.
The Hippo pathway is crucial in organ size control,and its dysregulation contributes to tumorigenesis. However,upstream signals that regulate the mammalian Hippo pathway have remained elusive. Here,we report that the Hippo pathway is regulated by G-protein-coupled receptor (GPCR) signaling. Serum-borne lysophosphatidic acid (LPA) and sphingosine 1-phosphophate (S1P) act through G12/13-coupled receptors to inhibit the Hippo pathway kinases Lats1/2,thereby activating YAP and TAZ transcription coactivators,which are oncoproteins repressed by Lats1/2. YAP and TAZ are involved in LPA-induced gene expression,cell migration,and proliferation. In contrast,stimulation of Gs-coupled receptors by glucagon or epinephrine activates Lats1/2 kinase activity,thereby inhibiting YAP function. Thus,GPCR signaling can either activate or inhibit the Hippo-YAP pathway depending on the coupled G protein. Our study identifies extracellular diffusible signals that modulate the Hippo pathway and also establishes the Hippo-YAP pathway as a critical signaling branch downstream of GPCR.
View Publication
Reference
Neely MD et al. (JUN 2012)
ACS chemical neuroscience 3 6 482--91
DMH1, a highly selective small molecule BMP inhibitor promotes neurogenesis of hiPSCs: comparison of PAX6 and SOX1 expression during neural induction.
Recent successes in deriving human-induced pluripotent stem cells (hiPSCs) allow for the possibility of studying human neurons derived from patients with neurological diseases. Concomitant inhibition of the BMP and TGF-β1 branches of the TGF-β signaling pathways by the endogenous antagonist,Noggin,and the small molecule SB431542,respectively,induces efficient neuralization of hiPSCs,a method known as dual-SMAD inhibition. The use of small molecule inhibitors instead of their endogenous counterparts has several advantages including lower cost,consistent activity,and the maintenance of xeno-free culture conditions. We tested the efficacy of DMH1,a highly selective small molecule BMP-inhibitor for its potential to replace Noggin in the neuralization of hiPSCs. We compare Noggin and DMH1-induced neuralization of hiPSCs by measuring protein and mRNA levels of pluripotency and neural precursor markers over a period of seven days. The regulation of five of the six markers assessed was indistinguishable in the presence of concentrations of Noggin or DMH1 that have been shown to effectively inhibit BMP signaling in other systems. We observed that by varying the DMH1 or Noggin concentration,we could selectively modulate the number of SOX1 expressing cells,whereas PAX6,another neural precursor marker,remained the same. The level and timing of SOX1 expression have been shown to affect neural induction as well as neural lineage. Our observations,therefore,suggest that BMP-inhibitor concentrations need to be carefully monitored to ensure appropriate expression levels of all transcription factors necessary for the induction of a particular neuronal lineage. We further demonstrate that DMH1-induced neural progenitors can be differentiated into β3-tubulin expressing neurons,a subset of which also express tyrosine hydroxylase. Thus,the combined use of DMH1,a highly specific BMP-pathway inhibitor,and SB431542,a TGF-β1-pathway specific inhibitor,provides us with the tools to independently regulate these two pathways through the exclusive use of small molecule inhibitors.
View Publication
Reference
Matsuura K et al. (AUG 2012)
Biochemical and biophysical research communications 425 2 321--7
Creation of human cardiac cell sheets using pluripotent stem cells
Although we previously reported the development of cell-dense thickened cardiac tissue by repeated transplantation-based vascularization of neonatal rat cardiac cell sheets,the cell sources for human cardiac cells sheets and their functions have not been fully elucidated. In this study,we developed a bioreactor to expand and induce cardiac differentiation of human induced pluripotent stem cells (hiPSCs). Bioreactor culture for 14 days produced around 8×10(7) cells/100 ml vessel and about 80% of cells were positive for cardiac troponin T. After cardiac differentiation,cardiomyocytes were cultured on temperature-responsive culture dishes and showed spontaneous and synchronous beating,even after cell sheets were detached from culture dishes. Furthermore,extracellular action potential propagation was observed between cell sheets when two cardiac cell sheets were partially overlaid. These findings suggest that cardiac cell sheets formed by hiPSC-derived cardiomyocytes might have sufficient properties for the creation of thickened cardiac tissue.
View Publication
Reference
Chan LY-T et al. (FEB 2012)
Tissue Engineering Part C: Methods 19 2 120914060918004
Normalized Median Fluorescence: An Alternative Flow Cytometry Analysis Method for Tracking Human Embryonic Stem Cell States During Differentiation
Human embryonic stem cells (hESCs) are a promising cell source for tissue engineering and regenerative medicine,but before they can be used in therapies,we must be able to accurately identify the state and progeny of hESCs. One of the most commonly used methods for identification is flow cytometry. Many flow cytometry applications use antibodies to detect the amount of antigen present on/in a cell. This allows for the identification of unique cell populations or the tracking of expression changes within a population during differentiation. The results are typically presented as a percentage of positively expressing cells (%Pos) for a marker of choice,relative to a negative control. However,this reporting term is vulnerable to distortion from outliers and inaccuracy from loss of information about the population's fluorescence intensity. In this article,we describe an alternate strategy that uses the normalized median fluorescence intensity (nMFI),in which the MFI of the stained sample is normalized to the MFI of the negative control,as the reporting term to more accurately describe a population of cells in culture. We observed that nMFI provides a more accurate representation for the quality of a starting population and comparing data of different experimental runs. In addition,we demonstrated that the nMFI is a more sensitive measure of pluripotent and differentiation markers expression changes during hESC differentiation into three germ layer lineages.
View Publication
Reference
Bardy J et al. (SEP 2013)
Tissue engineering. Part C,Methods 19 2 120904064742009
Microcarrier suspension cultures for high-density expansion and differentiation of human pluripotent stem cells to neural progenitor cells.
Neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (hiPSCs) can be differentiated to neural cells that model neurodegenerative diseases and be used in the screening of potential drugs to ameliorate the disease phenotype. Traditionally,NPCs are produced in 2D cultures,in low yields,using a laborious process that includes generation of embryonic bodies,plating,and colony selections. To simplify the process and generate large numbers of hiPSC-derived NPCs,we introduce a microcarrier (MC) system for the expansion of a hiPSC line and its subsequent differentiation to NPC,using iPS (IMR90) as a model cell line. In the expansion stage,a process of cell propagation in serum-free MC culture was developed first in static culture,which is then scaled up in stirred spinner flasks. A 7.7-fold expansion of iPS (IMR90) and cell yield of 1.3×10�?� cells/mL in 7 days of static MC culture were achieved. These cells maintained expression of OCT 3/4 and TRA-1-60 and possessed a normal karyotype over 10 passages. A higher cell yield of 6.1×10�?� cells/mL and 20-fold hiPSC expansion were attained using stirred spinner flasks (seeded from MC static cultures) and changing the medium-exchange regimen from once to twice a day. In the differentiation stage,NPCs were generated with 78%-85% efficiency from hiPSCs using a simple serum-free differentiation protocol. Finally,the integrated process of cell expansion and differentiation of hiPSCs into NPCs using an MC in spinner flasks yielded 333 NPCs per seeded hiPSC as compared to 53 in the classical 2D tissue culture protocol. Similar results were obtained with the HES-3 human embryonic stem cell line. These NPCs were further differentiated into βIII-tubulin�?� neurons,GFAP�?� astrocytes,and O4�?� oligodendrocytes,showing that cells maintained their multilineage differentiation potential.
View Publication
Reference
Hyka-Nouspikel N et al. (SEP 2012)
Stem Cells 30 9 1901--10
Deficient DNA damage response and cell cycle checkpoints lead to accumulation of point mutations in human embryonic stem cells
Human embryonic stem cells (hESCs) tend to lose genomic integrity during long periods of culture in vitro and to acquire a cancer-like phenotype. In this study,we aim at understanding the contribution of point mutations to the adaptation process and at providing a mechanistic explanation for their accumulation. We observed that,due to the absence of p21/Waf1/Cip1,cultured hESCs lack proper cell cycle checkpoints and are vulnerable to the kind of DNA damage usually repaired by the highly versatile nucleotide excision repair (NER) pathway. In response to UV-induced DNA damage,the majority of hESCs succumb to apoptosis; however,a subpopulation continues to proliferate,carrying damaged DNA and accumulating point mutations with a typical UV-induced signature. The UV-resistant cells retain their proliferative capacity and potential for pluripotent differentiation and are markedly less apoptotic to subsequent UV exposure. These findings demonstrate that,due to deficient DNA damage response,the modest NER activity in hESCs is insufficient to prevent increased mutagenesis. This provides for the appearance of genetically aberrant hESCs,paving the way for further major genetic changes.
View Publication
Reference
Behar RZ et al. (NOV 2012)
Journal of Pharmacological and Toxicological Methods 66 3 238--245
A method for rapid dose-response screening of environmental chemicals using human embryonic stem cells
Introduction: Human embryonic stem cells (hESC) provide an invaluable model for assessing the effects of environmental chemicals and drugs on human prenatal development. However,hESC are difficult to adapt to 96-well plate screening assays,because they survive best when plated as colonies,which are difficult to count and plate accurately. The purpose of this study is to present an experimental method and analysis procedure to accomplish reliable screening of toxicants using hESC. Methods: We present a method developed to rapidly and easily determine the number of cells in small colonies of hESC spectrophotometerically and then accurately dispense equivalent numbers of cells in 96-well plates. The MTT assay was used to evaluate plating accuracy,and the method was tested using known toxicants. Results: The quality of the plate set-up and analysis procedure was evaluated with NIH plate validation and assessment software. All statistical parameters measured by the software were acceptable,and no drift or edge effects were observed. The 96-well plate MTT assay with hESC was tested by performing a dose-response screen of commercial products,which contain a variety of chemicals. The screen was done using single wells/dose,and the reliability of this method was demonstrated in a subsequent screen of the same products repeated three times. The single and triple screens were in good agreement,and NOAELs and IC50s could be determined from the single screen. The effects of vapor from volatile chemicals were studied,and methods to monitor and avoid vapor effects were incorporated into the assay. Discussion: Our method overcomes the difficulty of using hESC for reliable quantitative 96-well plate assays. It enables rapid dose-response screening using equipment that is commonly available in laboratories that culture hESC. This method could have a broad application in studies of environmental chemicals and drugs using hESC as models of prenatal development. ?? 2012 Elsevier Inc.
View Publication