Kokkinaki M et al. (MAY 2011)
Stem Cells 29 5 825--35
Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE.
Age-related macular degeneration (AMD) is one of the major causes of blindness in aging population that progresses with death of retinal pigment epithelium (RPE) and photoreceptor degeneration inducing impairment of central vision. Discovery of human induced pluripotent stem (hiPS) cells has opened new avenues for the treatment of degenerative diseases using patient-specific stem cells to generate tissues and cells for autologous cell-based therapy. Recently,RPE cells were generated from hiPS cells. However,there is no evidence that those hiPS-derived RPE possess specific RPE functions that fully distinguish them from other types of cells. Here,we show for the first time that RPE generated from hiPS cells under defined conditions exhibit ion transport,membrane potential,polarized vascular endothelial growth factor secretion,and gene expression profile similar to those of native RPE. The hiPS-RPE could therefore be a very good candidate for RPE replacement therapy in AMD. However,these cells show rapid telomere shortening,DNA chromosomal damage,and increased p21 expression that cause cell growth arrest. This rapid senescence might affect the survival of the transplanted cells in vivo and therefore,only the very early passages should be used for regeneration therapies. Future research needs to focus on the generation of safe" as well as viable hiPS-derived somatic cells."
View Publication
Reference
Chen G et al. (MAY 2011)
Nature methods 8 5 424--9
Chemically defined conditions for human iPSC derivation and culture.
We re-examine the individual components for human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) culture and formulate a cell culture system in which all protein reagents for liquid media,attachment surfaces and splitting are chemically defined. A major improvement is the lack of a serum albumin component,as variations in either animal- or human-sourced albumin batches have previously plagued human ESC and iPSC culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces,we demonstrate improved derivation efficiencies of vector-free human iPSCs with an episomal approach. This simplified E8 medium should facilitate both the research use and clinical applications of human ESCs and iPSCs and their derivatives,and should be applicable to other reprogramming methods.
View Publication
Pluripotent male germline stem cells from goat fetal testis and their survival in mouse testis.
Male germline stem cells (mGSCs) are stem cells present in male testis responsible for spermatogenesis during their whole life. Studies have shown that mGSCs can be derived in vitro and resemble embryonic stem cells (ESCs) properties both in the mouse and humans. However,little is know about these cells in domestic animals. Here we report the first successful establishment of goat GSCs derived from 2-5-month fetal testis,and developmental potential assay of these cells both in vitro and in vivo. These cells express pluripotent markers such as Oct4,Sox2,C-myc,and Tert when cultured as human ESCs conditions. Embryoid bodies (EBs) formed by goat mGSCs were induced with 2 × 10(-6) M retinoic acid (RA). Immunofluorescence analysis showed that some cells inside of the EBs were positive for meiosis marker-SCP3,STRA8,and germ cell marker-VASA,and haploid marker-FE-J1,PRM1,indicating their germ cell lineage differentiation. Some cells become elongated sperm-like cells after induction. Approximately 34.88% (30/86) embryos showed cleavage and four embryos were cultured on murine fibroblast feeder and formed small embryonic stem like colonies. However,most stalled at four-cell stage after intracytoplasmic sperm injection (ICSI) of these cells. Transplantation of DAPI labeled mGSCs into the seminiferous tubules of busulfan-treated mice,and showed that mGSCs can colonize,self-renew,and differentiate into germ cells. Thus,we have established a goat GSC cell line and these cells could be differentiated into sperm-like cells in vivo and sperms in vitro,providing a promising platform for generation of transgenic goat for production of specific humanized proteins.
View Publication
Reference
Moore RN et al. (JAN 2012)
Stem cells and development 21 1 30--41
E-cadherin-expressing feeder cells promote neural lineage restriction of human embryonic stem cells.
Human embryonic stem cells (hESCs) represent a promising source of tissues of different cell lineages because of their high degree of self-renewal and their unique ability to give rise to most somatic cell lineages. In this article,we report on a new approach to differentiate hESCs into neural stem cells that can be differentiated further into neuronal restricted cells. We have rapidly and efficiently differentiated hESCs into neural stem cells by presenting the cell adhesion molecule,E-cadherin,to undifferentiated hESCs via E-cadherin transfected fibroblast monolayers. The neural restricted progenitor cells rapidly express nestin and beta-III-tubulin,but not glial fibrillary acidic protein (GFAP) during the 1-week E-cadherin induction phase,suggesting that E-cadherin promotes rapid neuronal differentiation. Further,these cells are able to achieve enhanced neuronal differentiation with the addition of exogenous growth factors. Cadherin-induced hESCs show a loss in Oct4 and nestin expression associated with positive staining for vimentin,neurofilament,and neural cell adhesion molecule. Moreover,blocking by functional E-cadherin antibody and failure of paracrine stimulation suggested that direct E-cadherin engagement is necessary to induce neural restriction. By providing hESCs with molecular cues to promote differentiation,we are able to utilize a specific cell-cell adhesion molecule,E-cadherin,to influence the nature and degree of neural specialization.
View Publication
Although regulation of histone methylation is believed to contribute to embryonic stem cell (ESC) self-renewal,the mechanisms remain obscure. We show here that the histone H3 trimethyl lysine 4 (H3K4me3) demethylase,KDM5B,is a downstream Nanog target and critical for ESC self-renewal. Although KDM5B is believed to function as a promoter-bound repressor,we find that it paradoxically functions as an activator of a gene network associated with self-renewal. ChIP-Seq reveals that KDM5B is predominantly targeted to intragenic regions and that it is recruited to H3K36me3 via an interaction with the chromodomain protein MRG15. Depletion of KDM5B or MRG15 increases intragenic H3K4me3,increases cryptic intragenic transcription,and inhibits transcriptional elongation of KDM5B target genes. We propose that KDM5B activates self-renewal-associated gene expression by repressing cryptic initiation and maintaining an H3K4me3 gradient important for productive transcriptional elongation.
View Publication
Reference
Salvagiotto G et al. (JAN 2011)
PLoS ONE 6 3 e17829
A defined, feeder-free, serum-free system to generate In Vitro hematopoietic progenitors and differentiated blood cells from hESCs and hiPSCs
Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes,for drug discovery,and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimensional,defined and highly efficient protocol that avoids the use of feeder cells,serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells.
View Publication
Reference
Bak XY et al. (NOV 2011)
Human gene therapy 22 11 1365--77
Human embryonic stem cell-derived mesenchymal stem cells as cellular delivery vehicles for prodrug gene therapy of glioblastoma.
Mesenchymal stem cells (MSCs) possess tumor-tropic properties and consequently have been used to deliver therapeutic agents for cancer treatment. Their potential in cancer therapy highlights the need for a consistent and renewable source for the production of uniform human MSCs suitable for clinical applications. In this study,we seek to investigate whether human embryonic stem cells can be used as a cell source to fulfill this goal. We generated MSC-like cells from two human embryonic stem cell lines,HuES9 and H1,and observed that MSC-like cells derived from human embryonic stem cells were able to migrate into human glioma intracranial xenografts after being injected into the cerebral hemisphere contralateral to the tumor inoculation site. We engineered these cells with baculoviral and lentiviral vectors,respectively,for transient and stable expression of the herpes simplex virus thymidine kinase gene. In tumor-bearing mice the engineered MSC-like cells were capable of inhibiting tumor growth and prolonging survival in the presence of ganciclovir after they were injected either directly into the xenografts or into the opposite hemisphere. Our findings suggest that human embryonic stem cell-derived MSCs may be a viable and attractive alternative for large-scale derivation of targeting vehicles for cancer therapy.
View Publication
Reference
Bauwens CL et al. (AUG 2011)
Tissue engineering. Part A 17 15-16 1901--9
Geometric control of cardiomyogenic induction in human pluripotent stem cells.
Although it has been observed that aggregate size affects cardiac development,an incomplete understanding of the cellular mechanisms underlying human pluripotent stem cell-derived cardiomyogenesis has limited the development of robust defined-condition cardiac cell generation protocols. Our objective was thus to elucidate cellular and molecular mechanisms underlying the endogenous control of human embryonic stem cell (hESC) cardiac tissue development,and to test the hypothesis that hESC aggregate size influences extraembryonic endoderm (ExE) commitment and cardiac inductive properties. hESC aggregates were generated with 100,1000,or 4000 cells per aggregate using microwells. The frequency of endoderm marker (FoxA2 and GATA6)-expressing cells decreased with increasing aggregate size during early differentiation. Cardiogenesis was maximized in aggregates initiated from 1000 cells,with frequencies of 0.49±0.06 cells exhibiting a cardiac progenitor phenotype (KDR(low)/C-KIT(neg)) on day 5 and 0.24±0.06 expressing cardiac Troponin T on day 16. A direct relationship between ExE and cardiac differentiation efficiency was established by forming aggregates with varying ratios of SOX7 (a transcription factor required for ExE development) overexpressing or knockdown hESCs to unmanipulated hESCs. We demonstrate,in a defined,serum-free cardiac induction system,that robust and efficient cardiac differentiation is a function of endogenous ExE cell concentration,a parameter that can be directly modulated by controlling hESC aggregate size.
View Publication
Reference
Fraga AM et al. (NOV 2011)
Stem cell reviews 7 4 775--81
A survey of parameters involved in the establishment of new lines of human embryonic stem cells.
Since the derivation of the first human embryonic stem cell (hESC) lines by Thomson and coworkers in 1998,more than 1,200 different hESC lines have been established worldwide. Nevertheless,there is still a recognized interest in the establishment of new lines of hESC,particularly from HLA types and ethnic groups currently underrepresented among the available lines. The methodology of hESC derivation has evolved significantly since 1998,when human LIF (hLIF) was used for maintenance of pluripotency. However,there are a number of different strategies for the several steps involved in establishing a new line of hESC. Here we make a survey of the most relevant parameters used between 1998 and 2010 for the derivation of the 375 hESC lines deposited in two international stem cell registries,and able to form teratomas in immunocompromised mice. Although we identify some trends in the methodology for establishing hESC lines,our data reveal a much greater heterogeneity of strategies than what is used for derivation of murine ESC lines,indicating that optimum conditions have not been consolidated yet,and thus,hESC establishment is still an evolving field of research.
View Publication
Reference
Zou J et al. (MAY 2011)
Blood 117 21 5561--5572
Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting.
We have developed induced pluripotent stem cells (iPSCs) from a patient with X-linked chronic granulomatous disease (X-CGD),a defect of neutrophil microbicidal reactive oxygen species (ROS) generation resulting from gp91(phox) deficiency. We demonstrated that mature neutrophils differentiated from X-CGD iPSCs lack ROS production,reproducing the pathognomonic CGD cellular phenotype. Targeted gene transfer into iPSCs,with subsequent selection and full characterization to ensure no off-target changes,holds promise for correction of monogenic diseases without the insertional mutagenesis caused by multisite integration of viral or plasmid vectors. Zinc finger nuclease-mediated gene targeting of a single-copy gp91(phox) therapeutic minigene into one allele of the safe harbor" AAVS1 locus in X-CGD iPSCs without off-target inserts resulted in sustained expression of gp91(phox) and substantially restored neutrophil ROS production. Our findings demonstrate how precise gene targeting may be applied to correction of X-CGD using zinc finger nuclease and patient iPSCs."
View Publication
Reference
Yuan SH et al. (MAR 2011)
PLoS ONE 6 3 e17540
Cell-surface marker signatures for the Isolation of neural stem cells, glia and neurons derived from human pluripotent stem cells
BACKGROUND: Neural induction of human pluripotent stem cells often yields heterogeneous cell populations that can hamper quantitative and comparative analyses. There is a need for improved differentiation and enrichment procedures that generate highly pure populations of neural stem cells (NSC),glia and neurons. One way to address this problem is to identify cell-surface signatures that enable the isolation of these cell types from heterogeneous cell populations by fluorescence activated cell sorting (FACS). METHODOLOGY/PRINCIPAL FINDINGS: We performed an unbiased FACS- and image-based immunophenotyping analysis using 190 antibodies to cell surface markers on naïve human embryonic stem cells (hESC) and cell derivatives from neural differentiation cultures. From this analysis we identified prospective cell surface signatures for the isolation of NSC,glia and neurons. We isolated a population of NSC that was CD184(+)/CD271(-)/CD44(-)/CD24(+) from neural induction cultures of hESC and human induced pluripotent stem cells (hiPSC). Sorted NSC could be propagated for many passages and could differentiate to mixed cultures of neurons and glia in vitro and in vivo. A population of neurons that was CD184(-)/CD44(-)/CD15(LOW)/CD24(+) and a population of glia that was CD184(+)/CD44(+) were subsequently purified from cultures of differentiating NSC. Purified neurons were viable,expressed mature and subtype-specific neuronal markers,and could fire action potentials. Purified glia were mitotic and could mature to GFAP-expressing astrocytes in vitro and in vivo. CONCLUSIONS/SIGNIFICANCE: These findings illustrate the utility of immunophenotyping screens for the identification of cell surface signatures of neural cells derived from human pluripotent stem cells. These signatures can be used for isolating highly pure populations of viable NSC,glia and neurons by FACS. The methods described here will enable downstream studies that require consistent and defined neural cell populations.
View Publication