Gene expression profiling and localization of Hoechst-effluxing CD45- and CD45+ cells in the embryonic mouse lung.
Hoechst-effluxing cells (side population cells) are a rare subset of cells found in adult tissues that are highly enriched for stem and progenitor cell activity. To identify potential stem and progenitor cells during lung development,we generated gene expression profiles for CD45- and CD45+ side population cells in the embryonic day 17.5 lung. We found that side population cells comprise 1% of total embryonic day 17.5 lung cells (55% CD45+,45% CD45-). Gene profiling data demonstrated an overrepresentation of endothelial genes within the CD45- side population. We used expression of several distinct genes to identify two types of CD45- side population cells: 1) von Willebrand factor+/smooth muscle actin+ cells that reside in the muscular layer of select large vessels and 2) von Willebrand factor+/intercellular adhesion molecule+ cells that reside within the endothelial layer of select small vessels. Gene profiling of the CD45+ side population indicated an overrepresentation of genes associated with myeloid cell differentiation. Consistent with this,culturing CD45+ side population cells was associated with induction of mature dendritic markers (CD86). The microarray results suggested that expression of myeloperoxidase and proteinase-3 might be used to identify CD45+ side population cells. By immunohistochemistry,we found that myeloperoxidase+/proteinase-3+ cells represent a small subset of total CD45+ cells in the embryonic day 17.5 lung and that they reside in the mesenchyme and perivascular regions. This is the first detailed information regarding the phenotype and localization of side population cells in a developing organ.
View Publication
文献
Wang R et al. (FEB 1992)
Development (Cambridge,England) 114 2 303--16
Embryonic stem cell-derived cystic embryoid bodies form vascular channels: an in vitro model of blood vessel development.
Murine embryonic stem cells can differentiate in vitro to form cystic embryoid bodies (CEB) that contain different structures and cell types. The blood islands are one such structure that consist of immature hematopoietic cells surrounded by endothelial cells,the first identifiable vascular cells. CEBs differentiated in vitro developed blood islands initially,and subsequently these blood islands matured to form vascular channels containing hematopoietic cells. Phase contrast microscopy demonstrated the presence of channels in mature CEBs grown in suspension culture,and high resolution light and electron microscopy showed that the cells lining these channels were endothelial cells. The channels appeared less organized than the vasculature of the mature yolk sac. The hematopoietic cells were occasionally seen 'flowing' through the CEB channels,although their numbers were reduced relative to the yolk sac. Analysis of primary CEB cultures showed the presence of cells with two characteristics of endothelial cells: approximately 30% of the cells labelled with fluorescent acetylated low density lipoprotein and a small number of cells were positive for von Willebrand's factor by immunostaining. Thus we conclude that a primitive vasculature forms in CEBs differentiated in vitro,and that not only primary differentiation of endothelial cells but also some aspects of vascular maturation are intrinsic to this cell culture system. CEBs are therefore a useful model for the study of developmental blood vessel formation.
View Publication
文献
Cheng L et al. (JUN 2014)
Cell Research 24 6 665--679
Generation of neural progenitor cells by chemical cocktails and hypoxia
Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail,namely VCR (V,VPA,an inhibitor of HDACs; C,CHIR99021,an inhibitor of GSK-3 kinases and R,Repsox,an inhibitor of TGF-β pathways),under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs re- garding their proliferative and self-renewing abilities,gene expression profiles,and multipotency for different neu- roectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation,glycogen synthase kinase,and TGF-β pathways show similar efficacies for ciNPC induction. Moreover,ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemi- cal cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors.
View Publication
文献
Palmqvist L et al. (MAY 2005)
Stem cells (Dayton,Ohio) 23 5 663--80
Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency.
Global gene expression profiling was performed on murine embryonic stem cells (ESCs) induced to differentiate by removal of leukemia inhibitory factor (LIF) to identify genes whose change in expression correlates with loss of pluripotency. To identify appropriate time points for the gene expression analysis,the dynamics of loss of pluripotency were investigated using three functional assays: chimeric mouse formation,embryoid body generation,and colony-forming ability. A rapid loss of pluripotency was detected within 24 hours,with very low residual activity in all assays by 72 hours. Gene expression profiles of undifferentiated ESCs and ESCs cultured for 18 and 72 hours in the absence of LIF were determined using the Affymetrix GeneChip U74v2. In total,473 genes were identified as significantly differentially expressed,with approximately one third having unknown biological function. Among the 275 genes whose expression decreased with ESC differentiation were several factors previously identified as important for,or markers of,ESC pluripotency,including Stat3,Rex1,Sox2,Gbx2,and Bmp4. A significant number of the decreased genes also overlap with previously published mouse and human ESC data. Furthermore,several membrane proteins were among the 48 decreased genes correlating most closely with the functional assays,including the stem cell factor receptor c-Kit. Through identification of genes whose expression closely follows functional properties of ESCs during early differentiation,this study lays the foundation for further elucidating the molecular mechanisms regulating the maintenance of ESC pluripotency and facilitates the identification of more reliable molecular markers of the undifferentiated state.
View Publication
文献
Liu H and Roy K ( )
Tissue engineering 11 1-2 319--30
Stem cell-based tissue engineering is a promising technology in the effort to create functional tissues of choice. To establish an efficient approach for generating hematopoietic cell lineages directly from embryonic stem (ES) cells and to study the effects of three-dimensional (3D) biomaterials on ES cell differentiation,we cultured mouse ES cells on 3D,highly porous,biomimetic scaffolds. Cell differentiation was evaluated by microscopy and flow cytometry analysis with a variety of hematopoiesis- specific markers. Our data indicate that ES cells differentiated on porous 3D scaffold structures developed embryoid bodies (EBs) similar to those in traditional two-dimensional (2D) cultures; however,unlike 2D differentiation,these EBs integrated with the scaffold and appeared embedded in a network of extracellular matrix. Most significantly,the efficiency of hematopoietic precursor cell (HPC) generation on 3D,as indicated by the expression of various HPC-specific surface markers (CD34,Sca-1,Flk-1,and c-Kit) and colony-forming cell (CFC) assays,was reproducibly increased (about 2-fold) over their 2D counterparts. Comparison of static and dynamic 3D cultures demonstrated that spinner flask technology also contributed to the higher hematopoietic differentiation efficiency of ES cells seeded on scaffolds. Continued differentiation of 3D-derived HPCs into the myeloid lineage demonstrated increased efficiency (2-fold) of generating myeloid compared with differentiation from 2D-derived HPCs.
View Publication
文献
Illi B et al. (MAR 2005)
Circulation research 96 5 501--8
Epigenetic histone modification and cardiovascular lineage programming in mouse embryonic stem cells exposed to laminar shear stress.
Experimental evidence indicates that shear stress (SS) exerts a morphogenetic function during cardiac development of mouse and zebrafish embryos. However,the molecular basis for this effect is still elusive. Our previous work described that in adult endothelial cells,SS regulates gene expression by inducing epigenetic modification of histones and activation of transcription complexes bearing acetyltransferase activity. In this study,we evaluated whether SS treatment could epigenetically modify histones and influence cell differentiation in mouse embryonic stem (ES) cells. Cells were exposed to a laminar SS of 10 dyne per cm2/s(-1),or kept in static conditions in the presence or absence of the histone deacetylase inhibitor trichostatin A (TSA). These experiments revealed that SS enhanced lysine acetylation of histone H3 at position 14 (K14),as well as serine phosphorylation at position 10 (S10) and lysine methylation at position 79 (K79),and cooperated with TSA,inducing acetylation of histone H4 and phosphoacetylation of S10 and K14 of histone H3. In addition,ES cells exposed to SS strongly activated transcription from the vascular endothelial growth factor (VEGF) receptor 2 promoter. This effect was paralleled by an early induction of cardiovascular markers,including smooth muscle actin,smooth muscle protein 22-alpha,platelet-endothelial cell adhesion molecule-1,VEGF receptor 2,myocyte enhancer factor-2C (MEF2C),and alpha-sarcomeric actin. In this condition,transcription factors MEF2C and Sma/MAD homolog protein 4 could be isolated from SS-treated ES cells complexed with the cAMP response element-binding protein acetyltransferase. These results provide molecular basis for the SS-dependent cardiovascular commitment of mouse ES cells and suggest that laminar flow may be successfully applied for the in vitro production of cardiovascular precursors.
View Publication
文献
Flores-Figueroa E et al. (FEB 2005)
Leukemia research 29 2 215--24
Mesenchymal stem cells in myelodysplastic syndromes: phenotypic and cytogenetic characterization.
Bone marrow-derived mesenchymal stem cells (MSC) have been defined as primitive,undifferentiated cells,capable of self-renewal and with the ability to give rise to different cell lineages,including adipocytes,osteocytes,fibroblasts,chondrocytes,and myoblasts. MSC are key components of the hematopoietic microenvironment. Several studies,including some from our own group,suggest that important quantitative and functional alterations are present in the stroma of patients with myelodysplasia (MDS). However,in most of such studies the stroma has been analyzed as a complex network of different cell types and molecules,thus it has been difficult to identify and characterize the cell(s) type(s) that is (are) altered in MDS. In the present study,we have focused on the biological characterization of MSC from MDS. As a first approach,we have quantified their numbers in bone marrow,and have worked on their phenotypic (morphology and immunophenotype) and cytogenetic properties. MSC were obtained by a negative selection procedure and cultured in a MSC liquid culture medium. In terms of morphology,as well as the expression of certain cell markers,no differences were observed between MSC from MDS patients and those derived from normal marrow. In both cases,MSC expressed CD29,CD90,CD105 and Prolyl-4-hydroxylase; in contrast,they did not express CD14,CD34,CD68,or alkaline phosphatase. Interestingly,in five out of nine MDS patients,MSC developed in culture showed cytogenetic abnormalities,usually involving the loss of chromosomal material. All those five cases also showed cytogenetic abnormalities in their hematopoietic cells. Interestingly,in some cases there was a complete lack of overlap between the karyotypes of hematopoietic cells and MSC. To the best of our knowledge,the present study is the first in which a pure population of MSC from MDS patients is analyzed in terms of their whole karyotype and demonstrates that in a significant proportion of patients,MSC are cytogenetically abnormal. Although the reason of this is still unclear,such alterations may have an impact on the physiology of these cells. Further studies are needed to assess the functional integrity of MDS-derived MSC.
View Publication
文献
Vodyanik MA et al. (JAN 2005)
Blood 105 2 617--26
Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential.
Embryonic stem (ES) cells have the potential to serve as an alternative source of hematopoietic precursors for transplantation and for the study of hematopoietic cell development. Using coculture of human ES (hES) cells with OP9 bone marrow stromal cells,we were able to obtain up to 20% of CD34+ cells and isolate up to 10(7) CD34+ cells with more than 95% purity from a similar number of initially plated hES cells after 8 to 9 days of culture. The hES cell-derived CD34+ cells were highly enriched in colony-forming cells,cells expressing hematopoiesis-associated genes GATA-1,GATA-2,SCL/TAL1,and Flk-1,and retained clonogenic potential after in vitro expansion. CD34+ cells displayed the phenotype of primitive hematopoietic progenitors as defined by co-expression of CD90,CD117,and CD164,along with a lack of CD38 expression and contained aldehyde dehydrogenase-positive cells as well as cells with verapamil-sensitive ability to efflux rhodamine 123. When cultured on MS-5 stromal cells in the presence of stem cell factor,Flt3-L,interleukin 7 (IL-7),and IL-3,isolated CD34+ cells differentiated into lymphoid (B and natural killer cells) as well as myeloid (macrophages and granulocytes) lineages. These data indicate that CD34+ cells generated through hES/OP9 coculture display several features of definitive hematopoietic stem cells.
View Publication
文献
Carotta S et al. (SEP 2004)
Blood 104 6 1873--80
Directed differentiation and mass cultivation of pure erythroid progenitors from mouse embryonic stem cells.
Differentiating embryonic stem (ES) cells are an increasingly important source of hematopoietic progenitors,useful for both basic research and clinical applications. Besides their characterization in colony assays,protocols exist for the cultivation of lymphoid,myeloid,and erythroid cells. With the possible exception of mast cells,however,long-term expansion of pure hematopoietic progenitors from ES cells has not been possible without immortalization caused by overexpression of exogenous genes. Here,we describe for the first time an efficient yet easy strategy to generate mass cultures of pure,immature erythroid progenitors from mouse ES cells (ES-EPs),using serum-free medium plus recombinant cytokines and hormones. ES-EPs represent long-lived,adult,definitive erythroid progenitors that resemble immature erythroid cells expanding in vivo during stress erythropoiesis. When exposed to terminal differentiation conditions,ES-EPs differentiated into mature,enucleated erythrocytes. Importantly,ES-EPs injected into mice did not exhibit tumorigenic potential but differentiated into normal erythrocytes. Both the virtually unlimited supply of cells and the defined culture conditions render our system a valuable tool for the analysis of factors influencing proliferation and maturation of erythroid progenitors. In addition,the system allows detailed characterization of processes during erythroid proliferation and differentiation using wild-type (wt) and genetically modified ES cells.
View Publication
Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells.
We have observed karyotypic changes involving the gain of chromosome 17q in three independent human embryonic stem (hES) cell lines on five independent occasions. A gain of chromosome 12 was seen occasionally. This implies that increased dosage of chromosome 17q and 12 gene(s) provides a selective advantage for the propagation of undifferentiated hES cells. These observations are instructive for the future application of hES cells in transplantation therapies in which the use of aneuploid cells could be detrimental.
View Publication
文献
Wang Q et al. (FEB 2004)
Blood 103 4 1278--85
BUBR1 deficiency results in abnormal megakaryopoiesis.
The physiologic function of BUBR1,a key component of the spindle checkpoint,was examined by generating BUBR1-mutant mice. BUBR1(-/-) embryos failed to survive beyond day 8.5 in utero as a result of extensive apoptosis. Whereas BUBR1(+/-) blastocysts grew relatively normally in vitro,BUBR1(-/-) blastocysts exhibited impaired proliferation and atrophied. Adult BUBR1(+/-) mice manifested splenomegaly and abnormal megakaryopoiesis. BUBR1 haploinsufficiency resulted in an increase in the number of splenic megakaryocytes,which was correlated with an increase in megakaryocytic,but a decrease in erythroid,progenitors in bone marrow cells. RNA interference-mediated down-regulation of BUBR1 also caused an increase in polyploidy formation in murine embryonic fibroblast cells and enhanced megakaryopoiesis in bone marrow progenitor cells. However,enhanced megakaryopoiesis in BUBR1(+/-) mice was not correlated with a significant increase in platelets in peripheral blood,which was at least partly due to a defect in the formation of proplatelet-producing megakaryocytes. Together,these results indicate that BUBR1 is essential for early embryonic development and normal hematopoiesis.
View Publication
文献
Gutierrez-Ramos JC and Palacios R (OCT 1992)
Proceedings of the National Academy of Sciences of the United States of America 89 19 9171--5
In vitro differentiation of embryonic stem cells into lymphocyte precursors able to generate T and B lymphocytes in vivo.
Embryonic stem cells can be induced in vitro,by coculture with the stromal line RP.0.10 and a mixture of interleukins 3,6,and 7,to differentiate into T (Joro75+) and B (B-220+) lymphocyte progenitors and other (Thy-1+,PgP-1+,c-kit+,Joro75-,B-220-,F4/80-,Mac-1-) hemopoietic precursors. The progeny of in vitro-induced embryonic stem cells can reconstitute the lymphoid compartments of T- and B-lymphocyte-deficient scid mice and generate mature T and B lymphocytes in sublethally irradiated normal mice. Exogenous cytokines can dramatically alter the developmental fate of embryonic stem cells in culture. The in vitro system described here should facilitate the study of molecular events leading to cell-lineage commitment and to the formation of hemopoietic stem cells and their immediate lymphoid progeny.
View Publication