Rö et al. (SEP 2016)
Nature methods 13 9 777--783
TRIC: an automated alignment strategy for reproducible protein quantification in targeted proteomics.
Next-generation mass spectrometric (MS) techniques such as SWATH-MS have substantially increased the throughput and reproducibility of proteomic analysis,but ensuring consistent quantification of thousands of peptide analytes across multiple liquid chromatography-tandem MS (LC-MS/MS) runs remains a challenging and laborious manual process. To produce highly consistent and quantitatively accurate proteomics data matrices in an automated fashion,we developed TRIC (http://proteomics.ethz.ch/tric/),a software tool that utilizes fragment-ion data to perform cross-run alignment,consistent peak-picking and quantification for high-throughput targeted proteomics. TRIC reduced the identification error compared to a state-of-the-art SWATH-MS analysis without alignment by more than threefold at constant recall while correcting for highly nonlinear chromatographic effects. On a pulsed-SILAC experiment performed on human induced pluripotent stem cells,TRIC was able to automatically align and quantify thousands of light and heavy isotopic peak groups. Thus,TRIC fills a gap in the pipeline for automated analysis of massively parallel targeted proteomics data sets.
View Publication
Reference
Zhang H et al. (AUG 2016)
Cell reports 16 6 1536--1547
Distinct Metabolic States Can Support Self-Renewal and Lipogenesis in Human Pluripotent Stem Cells under Different Culture Conditions.
Recent studies have suggested that human pluripotent stem cells (hPSCs) depend primarily on glycolysis and only increase oxidative metabolism during differentiation. Here,we demonstrate that both glycolytic and oxidative metabolism can support hPSC growth and that the metabolic phenotype of hPSCs is largely driven by nutrient availability. We comprehensively characterized hPSC metabolism by using 13C/2H stable isotope tracing and flux analysis to define the metabolic pathways supporting hPSC bioenergetics and biosynthesis. Although glycolytic flux consistently supported hPSC growth,chemically defined media strongly influenced the state of mitochondrial respiration and fatty acid metabolism. Lipid deficiency dramatically reprogramed pathways associated with fatty acid biosynthesis and NADPH regeneration,altering the mitochondrial function of cells and driving flux through the oxidative pentose phosphate pathway. Lipid supplementation mitigates this metabolic reprogramming and increases oxidative metabolism. These results demonstrate that self-renewing hPSCs can present distinct metabolic states and highlight the importance of medium nutrients on mitochondrial function and development. Zhang et al. apply metabolic flux analysis to comprehensively characterize the metabolism of human pluripotent stem cells cultured in different media. Cells maintained in chemically defined media significantly upregulate lipid biosynthesis and redox pathways to compensate for medium lipid deficiency while downregulating oxidative mitochondrial metabolism.
View Publication
Reference
TeSlaa T et al. (SEP 2016)
Cell metabolism 24 3 485--493
α-Ketoglutarate Accelerates the Initial Differentiation of Primed Human Pluripotent Stem Cells.
Pluripotent stem cells (PSCs) can self-renew or differentiate from naive or more differentiated,primed,pluripotent states established by specific culture conditions. Increased intracellular α-ketoglutarate (αKG) was shown to favor self-renewal in naive mouse embryonic stem cells (mESCs). The effect of αKG or αKG/succinate levels on differentiation from primed human PSCs (hPSCs) or mouse epiblast stem cells (EpiSCs) remains unknown. We examined primed hPSCs and EpiSCs and show that increased αKG or αKG-to-succinate ratios accelerate,and elevated succinate levels delay,primed PSC differentiation. αKG has been shown to inhibit the mitochondrial ATP synthase and to regulate epigenome-modifying dioxygenase enzymes. Mitochondrial uncoupling did not impede αKG-accelerated primed PSC differentiation. Instead,αKG induced,and succinate impaired,global histone and DNA demethylation in primed PSCs. The data support αKG promotion of self-renewal or differentiation depending on the pluripotent state.
View Publication
Reference
Phondeechareon T et al. (OCT 2016)
Annals of hematology 95 10 1617--1625
Generation of induced pluripotent stem cells as a potential source of hematopoietic stem cells for transplant in PNH patients.
Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired hemolytic anemia caused by lack of CD55 and CD59 on blood cell membrane leading to increased sensitivity of blood cells to complement. Hematopoietic stem cell transplantation (HSCT) is the only curative therapy for PNH,however,lack of HLA-matched donors and post-transplant complications are major concerns. Induced pluripotent stem cells (iPSCs) derived from patients are an attractive source for generating autologous HSCs to avoid adverse effects resulting from allogeneic HSCT. The disease involves only HSCs and their progeny; therefore,other tissues are not affected by the mutation and may be used to produce disease-free autologous HSCs. This study aimed to derive PNH patient-specific iPSCs from human dermal fibroblasts (HDFs),characterize and differentiate to hematopoietic cells using a feeder-free protocol. Analysis of CD55 and CD59 expression was performed before and after reprogramming,and hematopoietic differentiation. Patients' dermal fibroblasts expressed CD55 and CD59 at normal levels and the normal expression remained after reprogramming. The iPSCs derived from PNH patients had typical pluripotent properties and differentiation capacities with normal karyotype. After hematopoietic differentiation,the differentiated cells expressed early hematopoietic markers (CD34 and CD43) with normal CD59 expression. The iPSCs derived from HDFs of PNH patients have normal levels of CD55 and CD59 expression and hold promise as a potential source of HSCs for autologous transplantation to cure PNH patients.
View Publication
CRISPR/Cas enhanced correction of the sickle cell disease (SCD) genetic defect in patient-specific induced Pluripotent Stem Cells (iPSCs) provides a potential gene therapy for this debilitating disease. An advantage of this approach is that corrected iPSCs that are free of off-target modifications can be identified before differentiating the cells into hematopoietic progenitors for transplantation. In order for this approach to be practical,iPSC generation must be rapid and efficient. Therefore,we developed a novel helper-dependent adenovirus/Epstein-Barr virus (HDAd/EBV) hybrid reprogramming vector,rCLAE-R6,that delivers six reprogramming factors episomally. HDAd/EBV transduction of keratinocytes from SCD patients resulted in footprint-free iPSCs with high efficiency. Subsequently,the sickle mutation was corrected by delivering CRISPR/Cas9 with adenovirus followed by nucleoporation with a 70 nt single-stranded oligodeoxynucleotide (ssODN) correction template. Correction efficiencies of up to 67.9% ($$(A)/[$$(S)+$$(A)]) were obtained. Whole-genome sequencing (WGS) of corrected iPSC lines demonstrated no CRISPR/Cas modifications in 1467 potential off-target sites and no modifications in tumor suppressor genes or other genes associated with pathologies. These results demonstrate that adenoviral delivery of reprogramming factors and CRISPR/Cas provides a rapid and efficient method of deriving gene-corrected,patient-specific iPSCs for therapeutic applications.
View Publication
Reference
Petrova A et al. (SEP 2016)
Stem cells and development 25 18 1366--1375
Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin.
The epigenetic background of pluripotent stem cells can influence transcriptional and functional behavior. Most of these data have been obtained in standard monolayer cell culture systems. In this study,we used exome sequencing,array comparative genomic hybridization (CGH),miRNA array,DNA methylation array,three-dimensional (3D) tissue engineering,and immunostaining to conduct a comparative analysis of two induced pluripotent stem cell (iPSC) lines used in engineering of 3D human epidermal equivalent (HEE),which more closely approximates epidermis. Exome sequencing and array CGH suggested that their genome was stable following 3 months of feeder-free culture. While the miRNAome was also not affected,≈7% of CpG sites were differently methylated between the two lines. Analysis of the epidermal differentiation complex,a region on chromosome 1 that contains multiple genes involved in skin barrier maturation (including trichohyalin,TCHH),found that in one of the iPSC clones (iKCL004),TCHH retained a DNA methylation signature characteristic of the original somatic cells,whereas in other iPSC line (iKCL011),the TCHH methylation signature matched that of the human embryonic stem cell line KCL034. The difference between the two iPSC clones in TCHH methylation did not have an obvious effect on its expression in 3D HEE,suggesting that differentiation and tissue formation may mitigate variations in the iPSC methylome.
View Publication
Reference
Imai T et al. ( 2017)
Pathobiology : journal of immunopathology,molecular and cellular biology 84 1 16--24
Overexpression of KIF11 in Gastric Cancer with Intestinal Mucin Phenotype.
OBJECTIVE Gastric cancer (GC) is one of the most common human cancers. A useful method of gastric cancer stem cell (CSC) characterization is spheroid colony formation. Previously,we reported that KIF11 expression is textgreater2-fold in spheroid-body-forming GC cells compared with parental cells. Here,we analyzed the expression and distribution of KIF11 in human GC by immunohistochemistry. METHODS Expression of KIF11 in 165 GC cases was determined using immunohistochemistry. For mucin phenotypic expression analysis of GC,immunostaining of MUC5AC,MUC6,MUC2 and CD10 was evaluated. RNA interference was used to inhibit KIF11 expression in GC cell lines. RESULTS In total,119 of 165 GC cases (72%) were positive for KIF11. Expression of KIF11 was not associated with any clinicopathologic characteristics; however,it was observed frequently in GC exhibiting an intestinal phenotype. Both the number and size of spheres formed by MKN-74 cells were significantly reduced following transfection of KIF11-targeting siRNA compared with negative-control siRNA. Furthermore,levels of phosphorylated Erk1/2 were lower in KIF11 siRNA-transfected cells than with negative-control siRNA-transfected cells. CONCLUSION These results indicate that KIF11 is involved in intestinal mucin phenotype GC.
View Publication
Reference
Sun Y et al. (JUL 2016)
eLife 5
A deleterious Nav1.1 mutation selectively impairs telencephalic inhibitory neurons derived from Dravet Syndrome patients.
Dravet Syndrome is an intractable form of childhood epilepsy associated with deleterious mutations in SCN1A,the gene encoding neuronal sodium channel Nav1.1. Earlier studies using human induced pluripotent stem cells (iPSCs) have produced mixed results regarding the importance of Nav1.1 in human inhibitory versus excitatory neurons. We studied a Nav1.1 mutation (p.S1328P) identified in a pair of twins with Dravet Syndrome and generated iPSC-derived neurons from these patients. Characterization of the mutant channel revealed a decrease in current amplitude and hypersensitivity to steady-state inactivation. We then differentiated Dravet-Syndrome and control iPSCs into telencephalic excitatory neurons or medial ganglionic eminence (MGE)-like inhibitory neurons. Dravet inhibitory neurons showed deficits in sodium currents and action potential firing,which were rescued by a Nav1.1 transgene,whereas Dravet excitatory neurons were normal. Our study identifies biophysical impairments underlying a deleterious Nav1.1 mutation and supports the hypothesis that Dravet Syndrome arises from defective inhibitory neurons.
View Publication
Reference
Perales-Clemente E et al. (JUL 2016)
The EMBO Journal e201694892
Natural underlying mtDNA heteroplasmy as a potential source of intra-person hiPSC variability
Functional variability among human clones of induced pluripotent stem cells (hiPSCs) remains a limitation in assembling high-quality biorepositories. Beyond inter-person variability,the root cause of intra-person variability remains unknown. Mitochondria guide the required transition from oxidative to glycolytic metabolism in nuclear reprogramming. Moreover,mitochondria have their own genome (mitochondrial DNA [mtDNA]). Herein,we performed mtDNA next-generation sequencing (NGS) on 84 hiPSC clones derived from a cohort of 19 individuals,including mitochondrial and non-mitochondrial patients. The analysis of mtDNA variants showed that low levels of potentially pathogenic mutations in the original fibroblasts are revealed through nuclear reprogramming,generating mutant hiPSCs with a detrimental effect in their differentiated progeny. Specifically,hiPSC-derived cardiomyocytes with expanded mtDNA mutations non-related with any described human disease,showed impaired mitochondrial respiration,being a potential cause of intra-person hiPSC variability. We propose mtDNA NGS as a new selection criterion to ensure hiPSC quality for drug discovery and regenerative medicine.
View Publication
Reference
Gao L et al. (JUL 2016)
Scientific reports 6 29944
Intermittent high oxygen influences the formation of neural retinal tissue from human embryonic stem cells.
The vertebrate retina is a highly multilayered nervous tissue with a large diversity of cellular components. With the development of stem cell technologies,human retinas can be generated in three-dimensional (3-D) culture in vitro. However,understanding the factors modulating key productive processes and the way that they influence development are far from clear. Oxygen,as the most essential element participating in metabolism,is a critical factor regulating organic development. In this study,using 3-D culture of human stem cells,we examined the effect of intermittent high oxygen treatment (40% O2) on the formation and cellular behavior of neural retinas (NR) in the embryonic body (EB). The volume of EB and number of proliferating cells increased significantly under 40% O2 on day 38,50,and 62. Additionally,the ratio of PAX6+ cells within NR was significantly increased. The neural rosettes could only develop with correct apical-basal polarity under 40% O2. In addition,the generation,migration and maturation of retinal ganglion cells were enhanced under 40% O2. All of these results illustrated that 40% O2 strengthened the formation of NR in EB with characteristics similar to the in vivo state,suggesting that the hyperoxic state facilitated the retinal development in vitro.
View Publication
Reference
Yechikov S et al. (JUL 2016)
Stem Cells
Same-Single-Cell Analysis of Pacemaker-Specific Markers in Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Subtypes Classified by Electrophysiology
Insights into the expression of pacemaker-speci�?c markers in human induced pluripotent stemcell (hiPSC)-derived cardiomyocyte subtypes can facilitate the enrichment and track differentia-tion and maturation of hiPSC-derived pacemaker-like cardiomyocytes. To date,no study hasdirectly assessed gene expression in each pacemaker-,atria-,and ventricular-like cardiomyocytesubtype derived from hiPSCs since currently the subtypes of these immature cardiomyocytescan only be identi�?ed by action potential pro�?les. Traditional acquisition of action potentialsusing patch-clamp recordings renders the cells unviable for subsequent analysis. We circum-vented these issues by acquiring the action potential pro�?le of a single cell optically followedby assessment of protein expression through immunostaining in that same cell. Our same-single-cell analysis for the �?rst time revealed expression of proposed pacemaker-speci�?cmarkers—hyperpolarization-activated cyclic nucleotide-modulated (HCN)4 channel and Islet(Isl)1—at the protein level in all three hiPSC-derived cardiomyocyte subtypes. HCN4 expressionwas found to be higher in pacemaker-like hiPSC-derived cardiomyocytes than atrial- andventricular-like subtypes but its downregulation over time in all subtypes diminished the differ-ences. Isl1 expression in pacemaker-like hiPSC-derived cardiomyocytes was initially not statisti-cally different than the contractile subtypes but did become statistically higher than ventricular-like cells with time. Our observations suggest that although HCN4 and Isl1 are differentiallyexpressed in hiPSC-derived pacemaker-like relative to ventricular-like cardiomyocytes,thesemarkers alone are insuf�?cient in identifying hiPSC-derived pacemaker-like cardiomyocytes.
View Publication
Reference
Chan HYS et al. (AUG 2016)
Science China Life Sciences 59 8 811--824
Expression and reconstitution of the bioluminescent Ca2+ reporter aequorin in human embryonic stem cells, and exploration of the presence of functional IP3 and ryanodine receptors during the early stages of their differentiation into cardiomyocytes
In order to develop a novel method of visualizing possible Ca(2+) signaling during the early differentiation of hESCs into cardiomyocytes and avoid some of the inherent problems associated with using fluorescent reporters,we expressed the bioluminescent Ca(2+) reporter,apo-aequorin,in HES2 cells and then reconstituted active holo-aequorin by incubation with f-coelenterazine. The temporal nature of the Ca(2+) signals generated by the holo-f-aequorin-expressing HES2 cells during the earliest stages of differentiation into cardiomyocytes was then investigated. Our data show that no endogenous Ca(2+) transients (generated by release from intracellular stores) were detected in 1-12-day-old cardiospheres but transients were generated in cardiospheres following stimulation with KCl or CaCl2,indicating that holo-f-aequorin was functional in these cells. Furthermore,following the addition of exogenous ATP,an inositol trisphosphate receptor (IP3R) agonist,small Ca(2+) transients were generated from day 1 onward. That ATP was inducing Ca(2+) release from functional IP3Rs was demonstrated by treatment with 2-APB,a known IP3R antagonist. In contrast,following treatment with caffeine,a ryanodine receptor (RyR) agonist,a minimal Ca(2+) response was observed at day 8 of differentiation only. Thus,our data indicate that unlike RyRs,IP3Rs are present and continually functional at these early stages of cardiomyocyte differentiation.
View Publication