Hasehira K et al. (JUN 2016)
Glycoconjugate Journal 1--10
Structural and quantitative evidence of ??2???6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells
Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such,they hold promise for use in stem cell-based therapies. However,no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously,we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that $$2-6-sialylation is a marker of the differentiation potential of these cells. Nevertheless,no information was available about the structural details of these of $$2-6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs),human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of $$2-6-sialylated N-glycans was detected in early passage cells (24-28 % of sialylated N-glycans) compared with late passage cells (13-15 %). A major $$2-6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes,Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast,no significant differences were observed between early and late passage hMSCs with respect to $$2-6-sialylated O-glycan percentages. These results demonstrate that levels of $$2-6-sialylated N-glycans,but not O-glycans,could be used as markers of the differential potential of hMSCs.
View Publication
Reference
Monti DA et al. ( 2016)
PloS one 11 6 e0157602
N-Acetyl Cysteine May Support Dopamine Neurons in Parkinson's Disease: Preliminary Clinical and Cell Line Data.
BACKGOUND The purpose of this study was to assess the biological and clinical effects of n-acetyl-cysteine (NAC) in Parkinson's disease (PD). METHODS The overarching goal of this pilot study was to generate additional data about potentially protective properties of NAC in PD,using an in vitro and in vivo approach. In preparation for the clinical study we performed a cell tissue culture study with human embryonic stem cell (hESC)-derived midbrain dopamine (mDA) neurons that were treated with rotenone as a model for PD. The primary outcome in the cell tissue cultures was the number of cells that survived the insult with the neurotoxin rotenone. In the clinical study,patients continued their standard of care and were randomized to receive either daily NAC or were a waitlist control. Patients were evaluated before and after 3 months of receiving the NAC with DaTscan to measure dopamine transporter (DAT) binding and the Unified Parkinson's Disease Rating Scale (UPDRS) to measure clinical symptoms. RESULTS The cell line study showed that NAC exposure resulted in significantly more mDA neurons surviving after exposure to rotenone compared to no NAC,consistent with the protective effects of NAC previously observed. The clinical study showed significantly increased DAT binding in the caudate and putamen (mean increase ranging from 4.4% to 7.8%; ptextless0.05 for all values) in the PD group treated with NAC,and no measurable changes in the control group. UPDRS scores were also significantly improved in the NAC group (mean improvement of 12.9%,p = 0.01). CONCLUSIONS The results of this preliminary study demonstrate for the first time a potential direct effect of NAC on the dopamine system in PD patients,and this observation may be associated with positive clinical effects. A large-scale clinical trial to test the therapeutic efficacy of NAC in this population and to better elucidate the mechanism of action is warranted. TRIAL REGISTRATION ClinicalTrials.gov NCT02445651.
View Publication
Reference
Rigamonti A et al. (JUN 2016)
Stem Cell Reports 6 6 993--1008
Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system
Human pluripotent stem cells (hPSCs) offer a renewable source of cells that can be expanded indefinitely and differentiated into virtually any type of cell in the human body,including neurons. This opens up unprecedented possibilities to study neuronal cell and developmental biology and cellular pathology of the nervous system,provides a platform for the screening of chemical libraries that affect these processes,and offers a potential source of transplantable cells for regenerative approaches to neurological disease. However,defining protocols that permit a large number and high yield of neurons has proved difficult. We present differentiation protocols for the generation of distinct subtypes of neurons in a highly reproducible manner,with minimal experiment-to-experiment variation. These neurons form synapses with neighboring cells,exhibit spontaneous electrical activity,and respond appropriately to depolarization. hPSC-derived neurons exhibit a high degree of maturation and survive in culture for up to 4-5 months,even without astrocyte feeder layers.
View Publication
Reference
Liu CC et al. (JUN 2016)
Stem cells (Dayton,Ohio) 1--19
Distinct Responses of stem Cells to Telomere Uncapping - a Potential Strategy to Improve the Safety Of Cell Therapy.
In most human somatic cells,the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually,DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However,the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped,in contrast to fibroblast cells that enter a state of replicative senescence. Significantly,telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity,we can functionally separate the two unique properties of human pluripotent stem cells,namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation,we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo,and thus sustained telomerase activity. This article is protected by copyright. All rights reserved.
View Publication
Reference
Ciampi O et al. (JUN 2016)
Stem Cell Research 17 1 130--139
Generation of functional podocytes from human induced pluripotent stem cells
Generating human podocytes in vitro could offer a unique opportunity to study human diseases. Here,we describe a simple and efficient protocol for obtaining functional podocytes in vitro from human induced pluripotent stem cells. Cells were exposed to a three-step protocol,which induced their differentiation into intermediate mesoderm,then into nephron progenitors and,finally,into mature podocytes. After differentiation,cells expressed the main podocyte markers,such as synaptopodin,WT1,α-Actinin-4,P-cadherin and nephrin at the protein and mRNA level,and showed the low proliferation rate typical of mature podocytes. Exposure to Angiotensin II significantly decreased the expression of podocyte genes and cells underwent cytoskeleton rearrangement. Cells were able to internalize albumin and self-assembled into chimeric 3D structures in combination with dissociated embryonic mouse kidney cells. Overall,these findings demonstrate the establishment of a robust protocol that,mimicking developmental stages,makes it possible to derive functional podocytes in vitro.
View Publication
Reference
Davenport C et al. (JUN 2016)
Stem Cells
The Anterior-Posterior Patterning of Definitive Endoderm Generated from Human Embryonic Stem Cells Depends on the Differential Signaling of Retinoic Acid, Wnt- and BMP-Signaling.
As known from model organisms,such as frog,fish,mouse and chicken,the anterior-posterior patterning of the definitive endoderm (DE) into distinct domains is controlled by a variety of signaling interactions between the DE and its surrounding mesoderm. This includes Wnt/FGFs and BMPs in the posterior half and all-trans-retinoic acid,TGF-$$-ligands,Wnt- and BMP-inhibitors in the anterior half of the DE sheet. However,it is currently unclear how these embryonic tissue interactions can be translated into a defined differentiation protocol for human embryonic stem cells. Activin A has been proposed to direct DE into a SOX2-positive foregut-like cell type. Due to the pleiotropic nature of SOX2 in pluripotency and developing cells of the foregut we purified DE-cells by magnetic cell sorting and tested the effects of anteriorizing and posteriorizing factors on pure endoderm. We show in contrast to previous studies that the generation of the foregut marked by SOX2/FOXA2 double-positive cells does not depend on activin A/TGF-$$-signaling but is mediated by the inhibition of Wnt- and BMP-signaling. Retinoic acid can posteriorize and at the same time dorsalize the foregut towards a PDX1-positive pancreatic duodenal cell type whereas active Wnt/beta-catenin signaling synergistically with FGF-2,BMP-4 and RA induces the formation of CDX2-positive posterior endoderm. Thus,these results provide new insights into the mechanisms behind cell specification of human DE derived from pluripotent stem cells. This article is protected by copyright. All rights reserved.
View Publication
Reference
Woolnough JL et al. ( 2016)
PLoS ONE 11 6 e0157276
The regulation of rRNA gene transcription during directed differentiation of human embryonic stem cells
It has become increasingly clear that proper cellular control of pluripotency and differentiation is related to the regulation of rRNA synthesis. To further our understanding of the role that the regulation of rRNA synthesis has in pluripotency we monitored rRNA synthesis during the directed differentiation of human embryonic stem cells (hESCs). We discovered that the rRNA synthesis rate is reduced ˜50% within 6 hours of ACTIVIN A treatment. This precedes reductions in expression of specific stem cell markers and increases in expression of specific germ layer markers. The reduction in rRNA synthesis is concomitant with dissociation of the Pol I transcription factor,UBTF,from the rRNA gene promoter and precedes any increase to heterochromatin throughout the rRNA gene. To directly investigate the role of rRNA synthesis in pluripotency,hESCs were treated with the Pol I inhibitor,CX-5461. The direct reduction of rRNA synthesis by CX-5461 induces the expression of markers for all three germ layers,reduces the expression of pluripotency markers,and is overall similar to the ACTIVIN A induced changes. This work indicates that the dissociation of UBTF from the rRNA gene,and corresponding reduction in transcription,represent early regulatory events during the directed differentiation of pluripotent stem cells.
View Publication
Reference
Du C et al. (JUN 2016)
Advanced healthcare materials 5 16 2080--2091
Functional Kidney Bioengineering with Pluripotent Stem-Cell-Derived Renal Progenitor Cells and Decellularized Kidney Scaffolds
Recent advances in developmental biology and stem cell technology have led to the engineering of functional organs in a dish. However,the limited size of these organoids and absence of a large circulatory system poses limits to its clinical translation. To overcome these issues,decellularized whole kidney scaffolds with native microstructure and extracellular matrix (ECM) are employed for kidney bioengineering,using human-induced pluripotent-stem-cell-derived renal progenitor cells and endothelial cells. To demonstrate ECM-guided cellular assembly,the present work is focused on generating the functional unit of the kidney,the glomerulus. In the repopulated organ,the presence of endothelial cells broadly upregulates the expression level of genes related to renal development. When the cellularized native scaffolds are implanted in SCID mice,glomeruli assembly can be achieved by co-culture of the renal progenitors and endothelial cells. These individual glomerular units are shown to be functional in the context of the whole organ using a simulated bio-reactor set-up with urea and creatinine excretion and albumin reabsorption. Our results indicate that the repopulation of decellularized native kidney using clinically relevant,expandable patient-specific renal progenitors and endothelial cells may be a viable approach for the generation of a functional whole kidney.
View Publication
Reference
Niu X et al. (JUN 2016)
Journal of Biological Chemistry 291 32 16576--16585
Combining single strand oligodeoxynucleotides and CRISPR/Cas9 to correct gene mutations in ??-thalassemia-induced pluripotent stem sells
$$-Thalassemia ($$-Thal) is one of the most common genetic diseases in the world. The generation of patient-specific $$-Thal-induced pluripotent stem cells (iPSCs),correction of the disease-causing mutations in those cells,and then differentiation into hematopoietic stem cells offers a new therapeutic strategy for this disease. Here,we designed a CRISPR/Cas9 to specifically target the Homo sapiens hemoglobin $$ (HBB) gene CD41/42(-CTTT) mutation. We demonstrated that the combination of single strand oligodeoxynucleotides with CRISPR/Cas9 was capable of correcting the HBB gene CD41/42 mutation in $$-Thal iPSCs. After applying a correction-specific PCR assay to purify the corrected clones followed by sequencing to confirm mutation correction,we verified that the purified clones retained full pluripotency and exhibited normal karyotyping. Additionally,whole-exome sequencing showed that the mutation load to the exomes was minimal after CRISPR/Cas9 targeting. Furthermore,the corrected iPSCs were selected for erythroblast differentiation and restored the expression of HBB protein compared with the parental iPSCs. This method provides an efficient and safe strategy to correct the HBB gene mutation in $$-Thal iPSCs.
View Publication
Reference
Kang S-JJ et al. (JUN 2016)
Cell Biology and Toxicology 1--15
Chemically induced hepatotoxicity in human stem cell-induced hepatocytes compared with primary hepatocytes and HepG2
Stem cell-induced hepatocytes (SC-iHeps) have been suggested as a valuable model for evaluating drug toxicology. Here,human-induced pluripotent stem cells (QIA7) and embryonic stem cells (WA01) were differentiated into hepatocytes,and the hepatotoxic effects of acetaminophen (AAP) and aflatoxin B1 (AFB1) were compared with primary hepatocytes (p-Heps) and HepG2. In a cytotoxicity assay,the IC50 of SC-iHeps was similar to that in p-Heps and HepG2 in the AAP groups but different from that in p-Heps of the AFB1 groups. In a multi-parameter assay,phenotypic changes in mitochondrial membrane potential,calcium influx and oxidative stress were similar between QIA7-iHeps and p-Heps following AAP and AFB1 treatment but relatively low in WA01-iHeps and HepG2. Most hepatic functional markers (hepatocyte-specific genes,albumin/urea secretion,and the CYP450 enzyme activity) were decreased in a dose-dependent manner following AAP and AFB1 treatment in SC-iHeps and p-Heps but not in HepG2. Regarding CYP450 inhibition,the cell viability of SC-iHeps and p-Heps was increased by ketoconazole,a CYP3A4 inhibitor. Collectively,SC-iHeps and p-Heps showed similar cytotoxicity and hepatocyte functional effects for AAP and AFB1 compared with HepG2. Therefore,SC-iHeps have phenotypic characteristics and sensitivity to cytotoxic chemicals that are more similar to p-Heps than to HepG2 cells.
View Publication
Reference
Bhadriraju K et al. (JUL 2016)
Stem Cell Research 17 1 122--129
Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies
Identification and quantification of the characteristics of stem cell preparations is critical for understanding stem cell biology and for the development and manufacturing of stem cell based therapies. We have developed image analysis and visualization software that allows effective use of time-lapse microscopy to provide spatial and dynamic information from large numbers of human embryonic stem cell colonies. To achieve statistically relevant sampling,we examined textgreater 680 colonies from 3 different preparations of cells over 5 days each,generating a total experimental dataset of 0.9 terabyte (TB). The 0.5 Giga-pixel images at each time point were represented by multi-resolution pyramids and visualized using the Deep Zoom Javascript library extended to support viewing Giga-pixel images over time and extracting data on individual colonies. We present a methodology that enables quantification of variations in nominally-identical preparations and between colonies,correlation of colony characteristics with Oct4 expression,and identification of rare events.
View Publication
Reference
Zheng X et al. (JUN 2016)
eLife 5 JUN2016
Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.
How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression,together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1,marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC,transcriptional activators of the HK2 and LDHA genes,decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death,indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes,whose levels are unchanged compared to NPCs,revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth,indicating an unknown mechanism linking mitochondrial biogenesis to cell size.
View Publication